Isometrinen voimaharjoittelu nopeuslajeissa – osa 2 käytäntö

Isometrinen voimaharjoittelu nopeuslajeissa – osa 2 käytäntö

Ensim­mäi­ses­sä osas­sa pureu­dut­tiin iso­met­ri­sen har­joit­te­lun teo­ri­aam ja iso­met­ri­sen kuor­mi­tuk­sen aiheut­ta­miin adap­taa­tioi­hin. Täs­sä toi­ses­sa osas­sa syven­ny­tään ohjel­moin­tie­si­merk­kei­hin ja käy­dään myös eri­lai­sia lii­ke-esi­merk­ke­jä läpi iso­met­ri­ses­tä voi­ma­har­joit­te­lus­ta. Iso­met­ri­ses­sä har­joit­te­lus­sa vain mie­li­ku­vi­tus toi­mii rajoit­ta­va­na teki­jä­nä harjoitevalinoissa.

Käytä räjähtävää tai ballistista voimantuottotapaa isometrisessä harjoittelussa

Iso­met­ri­nen voi­ma­har­joit­te­lu voi paran­taa voi­man­tuot­to­no­peut­ta, mut­ta vain jos se teh­dään räjäh­tä­väs­ti. Nopea voi­man­tuot­to on paran­tu­nut eri­tyi­ses­ti räjäh­tä­väl­lä tai bal­lis­ti­sel­la voi­ma­har­joit­te­lul­la (1, 2 & 3). Kun tavoit­tee­na on nopean voi­man­tuo­ton paran­ta­mi­nen, näyt­täi­si inten­tio ole­van yhtä tär­keä kuin ulkoi­nen supis­tus, kos­ka halut­tu muu­tos on joka tapauk­ses­sa her­mos­tol­li­nen ei lihas­työ­ta­val­la ole väliä (4). Joten käy­tä iso­met­ri­ses­sä voi­ma­har­joit­te­lus­sa nope­aa voimantuottoa.

Iso­met­ri­nen pol­ven ylä­puo­lel­ta teh­tä­vä veto on klas­si­nen iso­met­ri­nen voi­ma­har­joit­te­lu- ja mittausmetodi.

Isometrisen harjoittelun siirtovaikutus dynaamisiin liikkeisiin

Bog­da­nis ja kump­pa­nit (6) huo­ma­si­vat, että iso­met­ri­nen har­joit­te­lu paran­si dynaa­mis­ta mak­si­mi­kyyk­kyä kym­me­ni­sen pro­sent­tia ja esi­ke­ven­net­tyä hyp­pyä noin seit­se­män pro­sent­tia iso­met­ri­sen jal­kapräs­si­har­joit­te­lun jäl­keen. Iso­met­ri­nen voi­ma­har­joit­te­lun siir­to­vai­ku­tus on hyvä yksin­ker­tai­siin liik­kei­siin, mut­ta komplek­si­sem­mat liik­keet vaa­ti­vat enem­män koor­di­naa­tio­har­joit­te­lua kehit­tyäk­seen. Iso­met­ri­nen har­joit­te­lu ei vält­tä­mät­tä haas­ta moto­ris­ta aivo­kuor­ta tar­peek­si ja moto­ri­nen oppi­mi­nen saat­taa jää­dä pie­nem­mäl­le roo­lil­le ver­rat­tu­na dynaa­mi­seen har­joit­te­luun. Tämä kan­nat­taa huo­mioi­da har­joit­te­lua suunnitellessa.

Askel­kyyk­ky pin­noil­ta on hyvä tapa har­joi­tel­la kul­mas­pe­si­fis­ti nope­aa voimantuottoa.

Isometrisen harjoittelun hyödyt nopeuslajeissa ja pikajuoksijalle?

Urhei­lus­sa tär­keä omi­nai­suus on se, että miten nopeas­ti voi­maa pys­ty­tään tuot­ta­maan. Urhei­lu tapah­tuu usein sekun­nin kym­me­nyk­sis­sä ja sada­so­sis­sa ja näis­sä lyhyis­sä het­kis­sä pitäi­si pys­tyä tuot­ta­maan mah­dol­li­sim­man pal­jon voi­maa liik­kuak­seen eteen­päin, vaih­taak­seen suun­taan, pon­nis­taak­seen tai esi­mer­kik­si heit­tääk­seen väli­net­tä. Voi­man­tuot­to­no­peu­den kehit­tä­mi­nen ilman suu­rem­paa meta­bo­lis­ta väsy­mys­tä on iso­met­ri­sen har­joit­te­lun yksi etu ver­rat­tu­na dynaa­mi­seen harjoitteluun. 

Kon­sent­ri­nen työ­vai­he on perin­tei­sen voi­ma­har­joit­te­lun rajoit­ta­va lihas­työ­ta­pa. Perin­tei­sen kyy­kyn tai maas­ta­ve­don aika­na iso­met­ri­nen ja eksent­ri­nen lihas­työ­ta­pa ei tule tar­peek­si kuor­mi­te­tuk­si. Vaik­ka liik­kees­sä onkin eksent­ri­nen ja iso­met­ri­nen osuus, niin ne ovat sub­mak­si­maa­li­sia vai­hei­ta. Jos halu­aa kuor­mit­taa perin­tei­sen voi­ma­har­joit­te­lun kei­noin iso­met­ris­tä tai eksent­ris­tä lihas­työ­ta­paa, niin pitää lii­ket­tä hidas­taa tai lisä­tä stop­pe­ja liik­kee­seen. Tämä on hyvä kei­no, mut­ta lisää huo­mat­ta­vas­ti liik­keen meta­bo­lis­ta rasi­tus­ta, eikä niin­kään liik­keen her­mos­tol­lis­ta osuut­ta. Lisään­ty­nyt väsy­mys ja vähen­ty­nyt tehon­tuot­to ei ole tavoi­tel­ta­via asioi­ta nopeus­la­jin urhei­li­joil­le, aina­kaan kil­pai­lu­kau­del­la. Lisäk­si perin­tei­nen voi­ma­har­joit­te­lu aiheut­taa mekaa­nis­ta vau­rioi­ta, jos­ta toi­pu­mi­seen menee aikaa. Iso­met­ri­nen har­joit­te­lu näyt­täi­si pitä­vän urhei­li­jan hiu­kan tuo­reem­pa­na, jot­ta nopeus­har­joit­te­lua voi­daan teh­dä mik­ro­syklin sisäl­lä yhdes­sä voi­ma­har­joit­te­lun kanssa.

Taka­rei­si­pi­dot ovat lois­ta­va tapa kuor­mit­taa pit­käl­lä lihas­pi­tuu­del­la taka­rei­den iso­met­ris­tä voimantuottoa.

Iso­met­ri­sen har­joit­te­lun hyö­dyt pii­le­vät nopeus­la­jien urhei­li­joil­le sii­nä, että ne voi­daan suo­rit­taa mak­si­maa­li­sel­la inten­si­tee­til­lä ilman kovaa väsy­mys­tä. Tämä joh­tuu suu­rel­ta osin eksent­ri­sen vai­heen puut­tees­ta, joten lihas­vau­rioi­ta ei pää­se samas­sa mää­rin syn­ty­mään. Lisäk­si pie­nem­pi meta­bo­li­nen rasi­tus iso­met­ri­ses­sä har­joit­te­lus­sa vähen­tää urhei­li­jan akuut­tia väsymystä. 

Iso­met­ri­sel­lä har­joit­te­lul­la voi­daan teh­dä hyvin lajis­pe­si­fe­jä voi­ma­har­joi­tuk­sia. Esi­mer­kik­si eri­lai­sil­la liik­ku­mat­to­mil­la narui­la voi­daan teh­dä lon­kan­kou­kis­ta­jien nope­aa voi­man­tuot­toa pit­kil­lä lihas­pi­tuuk­sil­la (vasen kuva) tai lyhyil­lä lihas­pi­tuuk­sil­la (oikea kuva).

Miten toteuttaa isometristä voimaharjoittelua käytännössä

Iso­met­ri­sen har­joit­te­lus­sa tör­mä­tään yleen­sä ongel­maan, että miten progres­soi­da har­joit­te­lua. Voi­man kas­vua voi mita­ta voi­ma­le­vyil­lä tai eri­lai­sil­la veny­mä­mit­ta­reil­la. Ilman näi­tä on vai­kea havain­noi­da tuot­taa­ko urhei­li­ja tosis­saan mak­si­maa­li­sen mää­rän voi­maa tois­ton aika­na. Kos­ka nopeus­la­jin urhei­li­joil­le tavoit­tee­na on aina tuot­taa mak­si­mi­mää­rä voi­maa ja vie­lä mah­dol­li­sim­man nopeas­ti, on inten­si­teet­ti­progres­sio haas­ta­vaa. Volyy­mi­progres­sio on taas teho­kas tapa ede­tä, mut­ta sen kans­sa pitää olla erit­täin mal­til­li­nen. Har­joi­tus­fre­kvens­sin lisää­mi­nen on toi­nen teho­kas tapa lisä­tä volyy­mia. Vii­kos­sa tuli­si olla noin 40- 60 s nope­aa voi­man­tuot­toon täh­tää­vää iso­met­ris­tä har­joit­te­lua, jos tavoit­tee­na on nopean voi­man­tuo­ton paran­ta­mi­nen. Progres­sio voi olla esi­mer­kik­si tau­luk­ko 1:den kaltainen.

 Har­joi­tus­ker­ratYhden har­joi­tus­ker­ran volyy­mi (s)Koko­nais­vo­lyy­mi (s)
Viik­ko 122040
Viik­ko 222550
Viik­ko 323060
Viik­ko 432060
Viik­ko 532575
Viik­ko 633090
Tau­luk­ko 1: Yli kuu­den vii­kon ohjel­mia ei kan­na­ta nopeas­sa iso­met­ri­ses­sä voi­man­tuot­to­har­joit­te­lus­sa teh­dä. Kuden vii­kon jäl­keen tar­vi­taan vii­meis­tään ärsyk­keen vaihtelua.

Kuten kaik­ki nopeus­har­joit­te­lu pitäi­si myös räjäh­tä­vää iso­met­ris­tä voi­ma­har­joit­te­lua teh­dä tuo­ree­na ja levän­neen, jot­ta voi­daan mak­si­moi­da nopea voi­man­tuot­to. Nopea voi­man­tuot­to näyt­täi­si las­ke­van jopa vii­den tois­ton jäl­keen (6), joten suo­si­tel­ta­vaa oli­si pitää tois­to­mää­rä vähäi­si­nä (1-5). Sar­ja­progres­sio mää­räs­sä on tehok­kaam­pi tapa kuin tois­to­jen lisää­mi­nen, eli esi­mer­kik­si nel­jäs­tä sar­jas­ta koh­ti kym­men­tä sar­jaa. Tär­kein­tä on kui­ten­kin, että har­joit­te­lu suo­ri­te­taan mak­si­maa­li­sel­la intentiolla.

Esi­mer­kik­si Olsen ja Hop­kins (7) lait­toi­vat huip­pu­kamp­pai­lu­la­jiur­hei­li­jat teke­mään laji­lii­kes­pe­si­fiä iso­met­ris­tä har­joit­te­lua. Kamp­pai­li­jat teki­vät räjäh­tä­vää iso­met­ris­tä pot­ku­lii­ket­tä, kun pot­kua suo­rit­ta­va jal­ka oli sidot­tu vyöl­lä kiin­ni ylös. Kamp­pai­li­jat teki­vät nel­jä sar­jaa kym­me­nen tois­toa (muu­ta­ma sekun­ti) yhdek­sän vii­kon ajan. Ohejl­mas­sa oli mal­til­li­nen volyy­mi­progres­sio. Tut­ki­jat huo­ma­si­vat jopa 11-21 pro­sen­tin kas­vun lii­ke­no­peu­des­sa eri potkuliikkeissä.

Miten progressoida harjoittelua kuuden viikon ohjelman jälkeen?

Haluai­sit­ko integroi­da iso­met­ri­sen voi­ma­har­joit­te­lun mukaan ohjel­maan koko vuo­dek­si? Yksi hyvä tapa on teh­dä inten­si­teet­ti­progres­sio ohjel­mas­ta toi­seen lisää­mäl­lä vauh­tia. Esi­mer­kik­si tämän kal­tai­sel­la ohjelmalla:

Inten­si­tee­tin kehit­tä­mi­nen. Vauh­din lisää­mi­nen blo­kis­ta toiseen.

  1. Iso­met­ri­nen mak­si­maa­li­nen työ liik­ku­ma­ton­ta objek­tia vas­taan tavoit­tee­na kehit­tää spe­si­fiä hypert­ro­fi­aa ja vah­vis­taa jän­tei­tä (8-12 viikoa).
  2. Räjäh­tä­vät iso­met­ri­set (esim tau­lu­kon 1 ohjel­ma, noin 6 vikkoa)
  3. Iso­met­ri­set vaih­dot (6 viikkoa)
  4. Iso­met­ri­set kiin­nio­tot (6 viikkoa).

Iso­met­ri­set vaih­dot tar­koi­ta­vat dynaa­mi­sen liik­keen lisää­mis­tä iso­met­ri­seen voi­ma­har­joit­te­luun. Täs­sä on tar­koi­tus haas­taa iso­met­ris­tä voi­ma­har­joit­te­lua lisää­mäl­lä raa­jaan lii­ke­no­peut­ta, mikä pitää iso­met­ri­sen voi­ma­har­joit­te­lun aika­na pysäyt­tää ja hal­li­ta. Tämän kal­tais­ta lihas­työ­tä teh­dään urhei­lus­sa suo­ri­tuk­sis­sa huo­mat­ta­van pal­jon. Alla muu­ta­ma esi­merk­ki iso­met­ri­sis­tä vaih­dois­ta, mut­ta jäl­leen vain mie­li­ku­vi­tus on iso­met­ri­ses­sä voi­ma­har­joit­te­lus­sa raja­na. Mikä lii­ke pal­ve­li­si laji­si suo­ri­tus­ky­kyä par­haim­mal­la mah­dol­li­sel­la tavalla?

Iso­met­ri­set kiin­nio­tot taas ovat iso­met­ri­sis­tä vaih­dois­ta seu­raa­va vauh­dik­kaam­pi askel. Näis­sä lisä­tään yhä enem­män raa­jan vauh­tia. Mukaan tulee myös eksent­ri­nen osuus ennen iso­met­ris­tä osuut­ta, joten koko­nai­suu­des­saan nämä ovat jo hyvin lähel­lä dynaa­mi­sia liikkeitä.

Yhteenveto

Iso­met­ri­nen har­joit­te­lu on lois­ta­va tapa kehit­tää nope­aa voi­man­tuot­toa ilman suu­rem­paa meta­bo­lis­ta rasi­tus­ta. Toi­mii eri­tyi­sen hyvin kil­pai­lu­kau­den aika­na. Meka­nis­mit nopean iso­met­ri­sen voi­man­tuo­ton ja hitaan iso­met­ri­sen voi­man­tuo­ton välil­lä vaih­te­le­vat huomattavasti.

Esi­mer­kik­si Maf­fiu­let­ti ja Marin (8) ver­tai­li­vat iso­met­ris­tä jal­kapräs­siä niin, että toi­nen ryh­mä teki sitä räjäh­tä­väs­ti 1s ajan (yrit­ti tuot­taa mah­dol­li­sim­man pal­jon voi­maa mah­dol­li­sim­man nopeas­ti) ja toi­nen ryh­mä progres­sii­vi­ses­ti 4s ajan (voi­maa lisät­tiin rau­hal­li­ses­ti suo­ri­tuk­sen tois­ton ajan lisää). Kum­mat­kin ryh­mät paran­si­vat voi­man­tuot­toa huo­mat­ta­vas­ti. Meka­nis­mit taus­tal­la vaih­te­li­vat, kun progres­sii­vi­nen hitaam­pi iso­met­ri­nen har­joit­te­lu vai­kut­ti vas­tus late­ra­lik­sen M-aal­to­jen omi­nai­suuk­siin ilman vai­kut­ta­mat­ta lihas­so­lui­hin. M-aal­to kuvas­taa kaik­kien moto­ris­ten yksi­köi­den yhtä­ai­kais­ta syt­ty­mis­tä ja on kaik­kien aktio­po­ten­ti­aa­lien sum­ma. Lyhyem­pi räjäh­tä­vä voi­man­tuot­to vai­kut­ti lihas­so­lu­jen supis­tu­vien osien omi­nai­suuk­siin, kun taas M – aal­los­sa ei havait­tu mitään muutoksia. 

Onkin tär­keä tie­tää mitä halu­aa kehit­tää ja mik­si. Pelk­kä iso­met­ri­sen har­joit­te­lun tren­dik­kyys ei rii­tä syyk­si ruve­ta teke­mään sitä.

Alla lis­tat­tu­na muu­ta­mia eri­lai­sia iso­met­ri­sia harjoitteita;

Taka­rei­si­kou­kis­tus maaten.

Eri poh­je­nousu vari­aa­tioi­ta isometrisesti.
Rin­nal­le­ve­to­va­ri­aa­tio, jos­sa yri­te­tään teh­dä kiin­niot­to­vai­he mah­dol­li­sim­man nopeas­ti ja luki­ta iso­met­ri­nen vai­he paikalleen.
Vaa­ka­sou­tu­va­ri­aa­tio isometrisesti.
Pen­kis­sä eri voi­man­tuot­to­kul­mia voi hel­pos­ti har­joi­tel­la isometrisesti.
Iso­met­ri­nen askel­kyyk­ky­asen­nos­ta suo­ri­tet­tu veto.

Lähteet

  1. Bals­haw TG, Mas­sey GJ, Maden-Wilkinson TM, Til­lin NA, Fol­land JP. Training-specific func­tio­nal, neu­ral, and hypert­rop­hic adap­ta­tions to explosive- vs. sustained-contraction strength trai­ning. J Appl Phy­siol. 2016;120(11):1364-1373.
  2. Til­lin NA, Fol­land JP. Maxi­mal and explo­si­ve strength trai­ning elicit dis­tinct neu­ro­muscu­lar adap­ta­tions, speci­fic to the trai­ning sti­mu­lus. Eur J Appl Phy­siol. 2014;114(2):365-374.
  3. Maf­fiu­let­ti NA, Mar­tin A. Progres­si­ve ver­sus rapid rate of cont­rac­tion during 7 wk of iso­met­ric resis­tance trai­ning. Med Sci Sports Exerc. 2001;33(7):1220-1227
  4. Behm DG, Sale DG. Inten­ded rat­her than actual move­ment veloci­ty deter­mi­nes velocity-specific trai­ning res­pon­se. J Appl Phy­siol. 1993;74(1):359-368.
  5. Bog­da­nis GC, Tsou­kos A, Met­he­ni­tis SK, Seli­ma E, Veli­ge­kas P, Terzis G. Effects of low volu­me iso­met­ric leg press complex trai­ning at two knee angles on force-angle rela­tions­hip and rate of force deve­lop­ment. Eur J Sport Sci. 2018;1-9. https://doi.org /10.1080/17461391.2018.1510989. [Epub ahead of print].
  6. Vii­ta­sa­lo JT, Komi PV (1981) Effects of fati­gue on iso­met­ric force- and relaxa­tion-time cha­rac­te­ris­tics in human muscle. Acta Phy­sio­lo­gica Scan­da­vica 111(1):87–95.
  7. Olsen PD, Hop­kins WG (2003) The effect of attemp­ted bal­lis­tic trai­ning on the force and speed of move­ments. Jour­nal of Strength and Con­di­tio­ning Research 17(2):291–98.
  8. Maf­fiu­let­ti NA, Mar­tin A (2001) Progres­si­ve ver­sus rapid rate of cont­rac­tion during 7 wk of iso­met­ric resis­tance trai­ning. Medici­ne and Science in Sports and Exerci­se 33(7):1220–27.
Isometrinen voimaharjoittelu nopeuslajeissa – osa 1 minkälaisia adaptaatioita isometrinen harjoittelu aiheuttaa?

Isometrinen voimaharjoittelu nopeuslajeissa – osa 1 minkälaisia adaptaatioita isometrinen harjoittelu aiheuttaa?

Iso­met­ri­sel­lä lihas­työ­ta­val­la vii­ta­taan lihas­työ­hön, mis­sä lihas­jän­ne­komplek­sin pituu­des­sa ei tapah­du muu­tos­ta. Kon­sent­ri­ses­sa lihas­työ­ta­vas­sa lihas lyhe­nee supis­tues­saan ja eksent­ri­ses­sä lihas­työ­ta­vas­sa lihas pite­nee lihas­so­lu­jen supis­tues­sa. Esi­merk­ki­nä kyy­kys­tä ylös pon­nis­ta­mi­nen on kon­sent­ris­ta lihas­työ­tä suu­rim­mal­la osal­la jal­ko­jen lihak­sia ja lihas­ten pituus lyhe­nee, kun taas eksent­ri­nen toi­min­ta piden­tää lihas­pi­tuut­ta. Täs­tä esi­merk­ki­nä, kun men­nään alas­päin kyy­kys­sä.  Iso­met­ris­tä har­joit­te­lua voi­daan käy­tän­nös­sä teh­dä monel­la eri taval­la, mut­ta täs­sä jutus­sa kes­ki­ty­tään pel­käs­tään työs­ken­te­lyyn liik­ku­ma­ton­ta esi­net­tä vasten.

Iso­met­ri­nen har­joit­te­lu on eri­tyi­sen mie­len­kiin­toi­nen aihea­lue urhei­li­joil­le, kos­ka iso­met­ris­tä har­joit­te­lua voi hyö­dyn­tää posi­tii­vis­ten her­mo­li­has­jär­jes­tel­män adap­taa­tioi­den saa­vut­ta­mi­sek­si ilman lii­al­lis­ta väsy­mys­tä, mitä perin­tei­nen kes­ki­ras­kas voi­ma­har­joit­te­lu aiheuttaa. 

VIDEO 1: Ylei­sin tapa toteut­taa käy­tän­nös­sä iso­met­ris­tä voi­ma­har­joit­te­lua liik­ku­ma­ton­ta esi­net­tä vas­ten on käyt­tää tan­koa ja suo­ja­rau­to­ja tai vas­taa­via tukirakenteita. 

Minkälaisia adaptaatiota isometrinen harjoittelu aiheuttaa

Voiko pelkällä isometrisellä harjoittelulla kasvattaa lihasta?

Kyl­lä voi! Iso­met­ri­nen har­joit­te­lu 42–100 päi­vän ajan on joh­ta­nut 5,4–23% lihak­sen poik­ki­pin­ta-alan kas­vuun ja jopa 91,7% nousuun mak­si­mi­voi­mas­sa (28-37). Pidem­pi­kes­toi­nen inter­ven­tio näyt­täi­si vai­kut­ta­van huo­mat­ta­vas­ti lihak­sen kokoon. Mitä pidem­pi inter­ven­tio oli, sitä enem­män lihas kas­voi. Hypert­ro­fi­aan vai­kut­ti myös har­joit­te­lun inten­si­teet­ti, voluu­mi, supis­tuk­sen kes­to ja lihak­sen pituus. 

Eri­tyi­ses­ti pit­kil­lä lihas­pi­tuuk­sil­la teh­ty iso­met­ri­nen har­joit­te­lu paran­taa yli­voi­mai­ses­ti enem­män lihak­sen kokoa ver­rat­tu­na lyhyil­lä lihas­pi­tuuk­sil­la teh­tyyn iso­met­ri­seen har­joit­te­luun, vaik­ka volyy­mi oli­si tasat­tu näi­den ryh­mien välil­lä (1, 2 & 3). Tulok­set ovat lähes saman­suun­tai­sia, kun ver­ra­taan iso­met­ris­tä har­joit­te­lua dynaa­mi­seen har­joit­te­luun. Myös nor­maa­lis­sa dynaa­mi­ses­sa voi­ma­har­joit­te­lus­sa näyt­täi­si laa­ja lii­ke­ra­ta ole­van huo­mat­ta­vas­ti hyö­dyl­li­sem­pi hypert­ro­fian kan­nal­ta ver­rat­tu­na vajai­siin lii­ke­ra­toi­hin (4, 5 & 6). Yksi syy tähän voi olla, että pit­käl­lä lihas­pi­tuu­del­la teh­dyt supis­tuk­set näyt­täi­si­vät tuot­ta­van huo­mat­ta­vas­ti enem­män lihas­vau­rioi­ta ver­rat­tu­na lyhyel­lä lihas­pi­tuu­del­la teh­tä­viin har­joit­tei­siin (7). Tämä joh­tuu sii­tä, että nive­len vipu­var­si kas­vaa pit­kil­lä lihas­pi­tuuk­sil­la ja näin lisää mekaa­nis­ta jän­ni­tys­tä lihak­ses­sa ver­rat­tu­na lyhyem­pään vipu­var­teen. Suu­rem­pi mekaa­ni­nen jän­ni­tys aiheut­taa enem­män lihas­vau­rioi­ta. Lisäk­si pit­kät lihas­pi­tuu­det kulut­ta­vat enem­män hap­pea, vaa­ti­vat enem­män veren­kier­rol­ta töi­tä ja koko­nai­suu­des­saan lisää­vät meta­bo­liit­tien kerään­ty­mis­tä enem­män kuin lyhyet lihas­pi­tuu­det (8). Meta­bo­li­set teki­jät ovat tut­ki­tus­ti myös yhtey­des­sä lihas­kas­vuun (9). Eli jos tavoit­tee­na on spe­si­fi lihas­kas­vu iso­met­ri­ses­sä har­joit­te­lus­sa, niin pit­kät lihas­pi­tuu­det ovat ehdot­to­mas­ti paras valinta. 

Volyy­mil­lä on sel­väs­ti väliä myös iso­met­ri­ses­sä har­joit­te­lus­sa, kun tavoit­tee­na on lihas­kas­vu. Meyers (10) ver­tai­li mata­la volyy­mis­ta har­joit­te­lua (3 x 6 sekun­tia mak­si­maa­li­sel­la inten­si­tee­til­lä) kor­kea volyy­mi­seen har­joit­te­luun (20 x 6 sekun­tia mak­si­maa­li­sel­la inten­si­tee­til­lä) hauis­li­hak­sel­la. Kuu­den vii­kon jäl­keen enem­män volyy­mia teh­nyt ryh­mä oli saa­vut­ta­nut sel­väs­ti isom­man muu­tok­sen hauis­li­hak­sen ympä­rys­mi­tas­sa ver­rat­tu­na mata­la­vo­lyy­mi­seen ryh­mään. Myös Bals­haw ja kump­pa­nit (11) tote­si­vat, että suu­rem­pi mää­rä volyy­mia (40 x 3 sekun­tia 75% iso­met­ri­ses­tä mak­si­mis­ta) tuot­ti enem­män lihas­kas­vua etu­rei­teen 12-vii­kon aika­na ver­rat­tu­na pie­nem­pään har­joi­tus­kuor­maan (40 x 1 sekun­tia 80% iso­met­ri­ses­tä maksimista). 

Mie­len­kiin­tois­ta on myös, että Schott ja kump­pa­nit (12) löy­si­vät, että pidem­pi­kes­toi­nen har­joit­te­lu (4 x 30 sekun­tia) tuot­ti enem­män hypert­ro­fi­aa ver­rat­tu­na lyhyem­pi­kes­toi­seen har­joit­te­luun (4 x 10 x 3 sekun­tia), vaik­ka lii­ke­suo­rit­tei­den koko­nais­kes­to oli lopul­ta sekun­nil­leen yhtä pit­kä. 14-vii­kon har­joit­te­lun jäl­keen etu­rei­den vas­tus late­ra­lis lihas kas­voi jopa 11,1% enem­män, kun lyhyem­pi­kes­toi­sia supis­tuk­sia teh­neel­lä ryh­mäl­lä ei löy­det­ty ollen­kaan mer­kit­se­vää muu­tos­ta etu­rei­den kas­vus­ta! Tämä voi joh­tua sii­tä, että pit­kään yllä­pi­de­tyt supis­tuk­set estä­vät veren­kier­ron ja vähen­tä­vät hapen satu­raa­tio­ta alu­eel­la, sti­mu­loi­den näin hypert­ro­fi­aa monien pai­kal­lis­ten ja sys­tee­mis­ten meka­nis­mien kautta. 

KUVA 1: Iso­met­ris­tä har­joit­te­lua voi­daan tut­kia nil­kan plan­taa­ri- tai dor­siflek­sio­ta tark­kai­le­mal­la tämän näköi­sel­lä koeasetelmalla.

Isometrinen harjoittelu muokkaa myös lihaksen arkkitehtuuria

Hypert­ro­fi­aa haet­taes­sa lihas­työ­ta­val­la ei ole hir­veäs­ti mer­ki­tys­tä, sil­lä niin dynaa­mi­sel­la, eksent­ri­sel­lä ja iso­met­ri­sel­lä har­joit­te­lul­la voi­daan saa­da lihas­kas­vua aikai­sek­si, mut­ta jos tavoit­tee­na on saa­da muu­tok­sia aikaan lihak­sen ark­ki­teh­tuu­riin, on liha­työ­ta­val­la todel­la­kin merkitystä. 

Laa­duk­kai­ta tut­ki­muk­sia aihees­ta ei ole pal­joa, joten pää­tel­mien teke­mi­nen on haas­ta­vaa, mut­ta Noor­koiv ja kump­pa­nit (3) huo­ma­si­vat, että pidem­mäl­lä lihas­pi­tuu­del­la teh­ty iso­met­ri­nen har­joit­te­lu (pol­vi­kul­ma 38.1 ± 3.7°) kas­vat­ti vas­tus late­ra­lik­sen lihas­fascicu­luk­sen (lihas­so­lu­kimp­pu, jota ympä­röi lihas­kal­vo) pituut­ta kes­kio­sas­sa lihas­ta mer­kit­se­väs­ti. Mie­len­kiin­toi­ses­ti lyhyem­mäl­lä lihas­pi­tuu­del­la teh­ty har­joit­te­lu kas­vat­ti taas dis­taa­li­ses­sa pääs­sä ole­van lihas­fascicu­luk­sen pituut­ta. Ainoas­taan yksi toi­nen tut­ki­mus (1) on rapor­toi­nut vas­tus late­ra­lik­sen lihas­fascicu­luk­sen pituu­den lisään­ty­mis­tä ja myös pen­naa­tio­kul­man muu­tok­ses­ta pit­käl­lä lihas­pi­tuu­del­la teh­dyn iso­met­ri­sen har­joit­te­lun jälkeen. 

Iso­met­ri­nen voi­ma­har­joit­te­lu näyt­täi­si aiheut­ta­van muu­tok­sia lihak­sen ark­ki­teh­tuu­riin ja eri­tyi­ses­ti lisää­vän lihas­fascicu­luk­sen pituut­ta ja ken­ties jopa aiheut­taa muu­tok­sia pen­naa­tio­kul­maan. Täl­lä on eri­tyi­ses­ti väliä, jos tavoit­tee­na on teh­dä urhei­li­jois­ta nopeam­pia, sil­lä esi­mer­kik­si sprint­te­reil­lä on pidem­mät lihas­fascicu­luk­set jalois­sa ver­rat­tu­na kes­tä­vyy­sur­hei­li­joi­hin (38) ja 100 met­rin juok­susuo­ri­tus on yhdis­tet­ty lihas­fascicu­luk­sien pituuk­siin (39).

Isometrisen harjoittelun vaikutukset jänteisiin 

Jän­teen tar­koi­tus on siir­tää voi­mia luun ja lihak­sen välil­lä mah­dol­lis­taen nive­len lii­ke. Ennen aja­tel­tiin jän­tei­den ole­van muut­tu­mat­to­mia, mut­ta onnek­si nyky­ään tie­de­tään jo, että jän­teet kyke­ne­vät adap­toi­tu­maan sti­mu­luk­seen mer­kit­se­väs­ti ja voi­vat käy­dä todel­la iso­ja ark­ki­teh­tuu­ri­sia muu­tok­sia läpi pit­kä­ai­kai­sen kuor­mi­tuk­sen johdosta. 

Esi­mer­kik­si kun ver­tail­laan eri lajien urhei­li­joi­ta akil­les­jän­ne­re­peä­män koke­miin ihmi­siin, on huo­mat­tu, että esi­mer­kik­si len­to­pal­loi­li­joil­la on huo­mat­ta­vas­ti suu­rem­pi akil­les­jän­ne (119 ± 5.9) ver­rat­tu­na akil­les­jän­ne­re­peä­män koke­miin ihmi­siin (101 ± 5.4). Mie­len­kiin­tois­ta oli, että kajak­kiur­hei­li­joil­la oli lähes saman­ko­koi­nen akil­les­jän­ne kuin repeä­män koke­mil­la ihmi­sil­lä (101 ± 5.6) (13). Kajak­kiur­hei­li­jat eivät juu­ri käy­tä akil­les­jän­tei­tään lajis­saan, joten har­joit­te­lul­la näyt­täi­si ole­van suu­ri vai­ku­tus jän­teen rakenteisiin.

Jän­teen adap­taa­tiot ovat erit­täin tär­kei­tä ja halut­tu­ja adap­taa­tioi­ta nopeus­la­jin urhei­li­joil­le, sil­lä jän­ne toi­mii nopeas­sa liik­kees­sä lii­kut­ta­ja­na jousen tavoin. Inten­si­teet­ti on ehdot­to­mas­ti tär­kein muut­tu­ja jän­teen adap­taa­tiois­sa. Kova inten­si­teet­ti­nen iso­met­ri­nen plan­taa­riflek­sion har­joit­te­lu (noin 90 % iso­met­ri­ses­tä mak­si­mis­ta) lisä­si akil­les­jän­teen poik­ki­pin­ta-alaa ja jäyk­kyyt­tä 14-vii­kon har­joit­te­luoh­jel­man aika­na jopa par­haim­mil­laan 36 % (14 & 15). Samaa ei huo­mat­tu mata­lain­ten­si­teet­ti­sel­lä har­joit­te­lul­la (55 % iso­met­ri­ses­tä mak­si­mis­ta). Myös muut ovat rapor­toi­neet saman­kal­tai­sia run­sai­ta muu­tok­sia jän­teen jäyk­kyy­des­sä (vaih­te­lu­vä­li 17,5 % - 61,6 %) iso­met­ri­sen voi­ma­har­joit­te­lun seu­rauk­se­na inten­si­tee­tin vaih­del­les­sa 70–100 % välil­lä iso­met­ri­ses­tä mak­si­mi­voi­mas­ta (16, 17 & 18). Näyt­täi­si sil­tä, että 70 % voi­si olla mini­mi-inten­si­teet­ti, joka vaa­di­taan halut­tu­jen jän­nea­dap­taa­tioi­den saavuttamiseksi. 

Räjäh­tä­vä iso­met­ri­nen voi­ma­har­joit­te­lu taas lisä­si jän­teen apo­neu­roo­sin elas­ti­suut­ta, mut­ta vähen­si jän­teen poik­ki­pin­ta-alaa (-2,8 %) (19). Iso­met­ri­sen har­joit­te­lun inten­si­tee­til­lä ja kes­tol­la saa­vu­te­taan hyvin eri­lai­sia adap­taa­tioi­ta. Jän­tei­den vah­vis­ta­mi­ses­sa tulee suo­sia pidem­piä ja inten­si­teet­ti kor­keal­la teh­ty­jä supis­tuk­sia, kun taas kisa­kau­del­la voi teh­dä terä­väm­piä elas­ti­suut­ta lisää­viä erit­täin lyhyi­tä supis­tuk­sia. Lisäk­si pidem­pi lihas­pi­tuus näyt­täi­si kehit­tä­vän jän­teen jäyk­kyyt­tä enem­män kuin har­joit­te­lu lyhyel­lä lihas­pi­tuu­del­la samal­la taval­la kuin lihas­kas­vus­sa (2). 

KUVA 2: Bruce Lee­kin käyt­ti iso­met­ris­tä har­joit­te­lua kehit­tä­mään omaan suorituskykyään.

Isometrisen voimaharjoittelun vaikutukset hermostoon

Her­mos­ton adap­taa­tiot ovat koko­nai­suu­des­saan hyvin har­joit­te­lus­pe­si­fe­jä. Esi­mer­kik­si Bals­haw ja kump­pa­nit (11) ver­tai­li­vat 12 vii­kon aika­na mak­si­maa­lis­ta voi­ma­har­joit­te­lua (1 sekun­nin rau­hal­li­nen nousu 75% iso­met­ri­ses­tä mak­si­mis­ta ja siel­lä 3s pito) räjäh­tä­vään voi­ma­har­joit­te­luun (mah­dol­li­sim­man nopeas­ti >90% iso­met­ri­seen mak­si­miin ja siel­lä 1s pito). Iso­met­ri­nen mak­si­mi­voi­ma kehit­tyi eni­ten mak­si­mi­voi­ma­har­joit­te­lul­la, mut­ta räjäh­tä­vä voi­ma­har­joit­te­lu lisä­si EMG aktii­vi­suut­ta ihan liik­keen alus­sa (0–100 ms aika­na) enem­män ver­rat­tu­na mak­si­mi­voi­ma­har­joit­te­luun. Nämä adap­taa­tiot oli­vat her­mos­to­pe­räi­siä ja oli­vat har­joit­te­lus­pe­si­fe­jä, kun mak­si­mi­voi­ma­har­joit­te­lu kehit­ti mak­si­mi­voi­maa ja räjäh­tä­vä voi­ma kehit­ti nope­aa voi­man­tuot­to­ky­kyä. Myös bal­lis­ti­nen iso­met­ri­nen har­joit­te­lu on joh­ta­nut saman­kal­tai­siin tulok­siin ja EMG ampli­tu­din para­ne­mi­seen ensim­mäi­sen 0-150 ms aika­na ver­rat­tu­na mak­si­mi­voi­ma­har­joit­te­luun (11, 23 & 24). 

Iso­met­ri­sel­lä voi­ma­har­joit­te­lul­la voi­daan vai­kut­taa lihak­sen jän­ni­tys-pituus­suh­tee­seen, eli sii­hen, mil­lä lihak­sen­pi­tuu­del­la tai nive­len kul­mal­la tuo­te­taan isoin mah­dol­li­nen voi­ma. Tämä on eri­tyi­sen tär­keä urhei­lus­sa, jos­sa halu­taan mak­si­moi­da suu­rin mah­dol­li­nen tuo­tet­tu voi­ma halu­tus­sa asen­nos­sa. Myös paras­ta voi­man­tuot­to­kul­maa voi­daan muo­ka­ta iso­met­ri­sel­lä har­joit­te­lul­la. Esi­mer­kik­si Alegre ja kump­pa­nit (25) rapor­toi­vat, että pidem­mäl­lä lihas­pi­tuu­del­la har­joit­te­lu kah­dek­san vii­kon ajan joh­ti 11 asteen muu­tok­seen koh­ti pidem­piä lihas­pi­tuuk­sia, kun taas lyhyem­mil­lä kul­mil­la har­joit­te­lu joh­ti 5,3 astet­ta opti­maa­lis­ta kul­maa toi­seen suun­taan. Myös Bog­da­nis ja kump­pa­nit (26) huo­ma­si­vat noin 10 % tipu­tuk­sen opti­maa­li­ses­sa kul­mas­sa lyhyil­lä lii­ke­ra­doil­la harjoitellessa. 

Lihak­sen säh­köi­nen aktii­vi­suus (EMG) lisään­tyy pit­kil­lä lihas­pi­tuuk­sil­la enem­män ver­rat­tu­na lyhyi­siin lihas­pi­tuuk­siin (2 & 20). Pidem­pi lihas­pi­tuus näyt­täi­si lisää­vän myös liha­sak­tii­vi­suut­ta laa­jem­mal­la alu­eel­la, kun lyhyel­lä lihas­pi­tuu­del­la har­joi­tel­les­sa muu­tok­set näyt­täi­si­vät ole­van hyvin spe­si­fe­jä (21 & 22). Koko­nai­suu­des­saan pit­kät lihas­pi­tuu­det näyt­tä­vät jäl­leen ole­van tehok­kaam­pi vaih­toeh­to ver­rat­tu­na lyhyem­piin lihaspituuksiin. 

Pidem­pi­kes­toi­nen supis­tus näyt­täi­si ole­van jois­sa­kin tapauk­sis­sa tehok­kaam­pi tapa paran­taa voi­maa ja myös dynaa­mis­ta urhei­lun suo­ri­tus­ky­kyä (hyp­pää­mis­tä ja juok­se­mis­ta) ver­rat­tu­na nope­aan iso­met­ri­seen voi­man­tuot­to­ta­paan (40). Pidem­mäs­sä supis­tuk­ses­sa teh­tiin kol­men sekun­nin ajan työ­tä ja räjäh­tä­väs­sä nopeas­sa iso­met­ri­ses­sä voi­man­tuot­to­ta­vas­sa teh­tiin yhden sekun­nin ver­ran töi­tä. Tulok­sia on tul­kit­ta­va hie­man varo­vas­ti, sil­lä pidem­pää supis­tus­ta teh­nyt ryh­mä teki yhteen­sä 15 sekun­nin ver­ran työ­tä sar­jas­sa, kun lyhyem­pää pät­kää teh­nyt ryh­mä teki vain 10 sekun­nin ver­ran työ­tä. Kuu­den vii­kon aika­na ja 12 har­joi­tus­ker­ran vuok­si erot ker­taan­tu­vat ja teh­ty koko­nais­työ oli huo­mat­ta­vas­ti isom­pi kol­men sekun­nin ryh­mäs­sä ver­rat­tu­na yhden sekun­nin ryh­mään. Tämä var­mas­ti osal­taan selit­tää tuloksia. 

Kol­men sekun­nin ryh­mä paran­si esi­ke­ven­net­tyä hyp­pyä 12,1 % ja yhden sekun­nin ryh­mä 10,8 %. Erot kas­va­neis­ta voi­ma­ta­sois­sa­kin voi­vat selit­tää nämä muu­tok­set. Mie­len­kiin­toi­ses­ti pidem­pi­kes­toi­nen iso­met­ri­nen voi­ma­har­joit­te­lu aiheut­ti 1,4 % paran­nuk­sen 30 met­rin juok­suai­kaan. Täs­sä­kin tapauk­ses­sa enem­män har­joi­tel­lut ryh­mä paran­si huo­mat­ta­vas­ti enem­män nopeut­taan, kun vähem­män har­joi­tel­lut ryh­mä. Voi­si­ko kas­va­neet voi­ma­ta­sot, ei niin­kään nopeus, selit­tää erot. Nor­maa­lil­la koval­la kyy­kyl­lä ja ply­omet­ri­sel­lä har­joit­te­lul­la on saa­tu 1,2 % paran­nus 30 met­rin juok­suai­kaan (43), joka on aika lähel­lä tämän tut­ki­muk­sen saa­mia tuloksia. 

Toi­saal­ta täs­sä­kin tut­ki­muk­ses­sa huo­mat­tiin, että kyky tuot­taa voi­maa nopeam­min para­ni yhden sekun­nin ryh­mäl­lä enem­män kuin kol­men sekun­nin ryh­mäl­lä, kun taas pidem­pi­kes­toi­ses­sa supis­tuk­ses­sa mak­si­mi­voi­ma kehit­tyi enem­män. Myös muut ovat rapor­toi­neet saman­kal­tai­sia tulok­sia (41 & 42). 

Yhteenveto

Iso­met­ris­tä har­joit­te­lua voi hyö­dyn­tää posi­tii­vis­ten her­mo­li­has­jär­jes­tel­män adap­taa­tioi­den saa­vut­ta­mi­sek­si ilman lii­al­lis­ta väsy­mys­tä. Tämä on eri­tyi­sen tär­ke­ää eri­tyi­ses­ti urhei­li­joil­la kil­pai­lu­kau­den aika­na. Lisäk­si jos tiet­tyä voi­man­tuot­to­kul­maa tai lajin vaa­ti­mia kul­mia pitää har­joi­tel­la, niin iso­met­ri­nen har­joit­te­lu on erit­täin teho­kas työ­ka­lu niihin. 

Iso­met­ri­nen har­joit­te­luun pätee samat lai­na­lai­suu­det kuin muu­hun­kin har­joit­te­luun. Hypert­ro­fi­aa saa­vut­taak­se­si tulee har­joit­te­lua teh­dä 70-75% inten­si­tee­til­lä mak­si­maa­li­ses­ta supis­tuk­ses­ta noin 3-30s ajan tois­tos­sa ja sar­ja­mää­rän olles­sa > 80 – 150s per yksi har­joi­tus­ker­ta. Mak­si­mi­voi­maa saa­vut­taak­se­si iso­met­ris­tä har­joit­te­lua tulee teh­dä 80-100% mak­si­maa­li­ses­ta supis­tuk­ses­ta 1-5s ajan ja koko­nais­kes­ton olles­sa 30-90s. Voi­man­tuot­to­no­peut­ta paran­taak­seen tulee suo­ri­tuk­ses­sa pyr­kiä tuot­ta­maan mah­dol­li­sim­man nopeas­ti mah­dol­li­sim­man pal­jon voi­maa. Sar­jan kes­ton tulee olla lyhyt. Kuvas­sa 3 on koot­tu tämän­het­ki­seen tut­ki­mus­näyt­töön perus­tuen ohjeis­tus iso­met­ri­seen voimaharjoitteluun.

KUVA 3: Tämän­het­ki­ses­tä tuki­mus­näy­tös­tä koos­tet­tu tau­luk­ko miten iso­met­ris­tä har­joit­te­lua tuli­si teh­dä, jos halu­aa saa­vut­taa tie­tyn adaptaation.

Tii­vis­tys

  • Lihas­ta­kin voin kas­vat­taa pel­käl­lä iso­met­ri­sel­lä har­joit­te­lul­la. Volyy­mi ja lihas­pi­tuus ovat tär­keim­mät muut­tu­jat, kun tavoit­tee­na on lihaskasvu. 
  • Iso­met­ri­ses­sä har­joit­te­lus­sa pit­kil­lä lihas­pi­tuuk­sil­la suo­ri­te­tul­la har­joit­te­lul­la on ylei­ses­ti enem­män etu­ja ver­rat­tu­na lyhyil­lä lihas­pi­tuuk­sil­la suo­ri­tet­tuun harjoitteluun. 
  • Suu­rim­mat muu­tok­set tapah­tu­vat har­joi­tel­luil­la kul­mil­la, joten har­joit­te­le sitä kul­maa mitä haluat kehittää.
  • Iso­met­ri­sel­lä har­joit­te­lu voi­daan vai­kut­taa lihak­sen jännitys-pituussuhteeseen.
  • Iso­met­ri­ses­sä har­joit­te­lus­sa inten­si­teet­ti on pää­muut­tu­ja voi­man koh­dal­la. Hypert­ro­fian koh­dal­la volyymi. 
  • Bal­lis­ti­sel­la pro­to­ko­la on yli­voi­mai­nen räjäh­tä­vän voi­man kehit­ty­mi­seen. Ensim­mäi­sel­le 50 ja 100 ms voi paran­taa voi­man­tuot­toa huo­mat­ta­vas­ti. Jos tämä on tavoi­te, niin har­joit­teet tuli­si teh­dä mah­dol­li­sim­man nopeas­ti ja mah­dol­li­sim­man voimakkaasti. 

Lähteet:

  1. Alegre LM, Ferri-Morales A, Rodriguez-Casares R, Agua­do X. Effects of iso­met­ric trai­ning on the knee exten­sor moment–angle rela­tions­hip and vas­tus late­ra­lis muscle arc­hi­tec­tu­re. Eur J Appl Phy­siol. 2014;114(11):2437-2446.
  2. Kubo K, Ohgo K, Takeis­hi R, et al. Effects of iso­met­ric trai­ning­mat dif­fe­rent knee angles on the muscle–tendon complex in vivo. Scand J Med Sci Sports. 2006;16(3):159-167.
  3. Noor­koiv M, Nosa­ka K, Blaze­vich AJ. Neu­ro­muscu­lar adap­ta­tions associa­ted with knee joint angle-specific force chan­ge. Med Sci Sports Exerc. 2014;46(8):1525-1537.
  4. Guex K, Degac­he F, Mori­sod C, Sail­ly M, Mil­let GP. Ham­string arc­hi­tec­tu­ral and func­tio­nal adap­ta­tions fol­lowing long vs. short muscle length eccent­ric trai­ning. Front Phy­siol. 2016;7(340):1-9.
  5. Barak Y, Ayalon M, Dvir Z. Trans­fe­ra­bi­li­ty of strength gains from limi­ted to full ran­ge of motion. Med Sci Sports Exerc. 2004;36(8):1413-1420.
  6. Mas­sey CD, Vincent J, Mane­val M, Moo­re M, John­son JT. An ana­ly­sis of full ran­ge of motion vs. par­tial ran­ge of motion trai­ning in the deve­lop­ment of strength in unt­rai­ned men. J Strength Cond Res. 2004;18(3):518-521.
  7. Allen TJ, Jones T, Tsay A, Mor­gan DL, Pros­ke U. Muscle dama­ge pro­duced by iso­met­ric cont­rac­tions in human elbow flexors. J Appl Phy­siol. 2018;124(2):388-399.
  8. de Rui­ter CJ, de Boer MD, Span­jaard M, de Haan A. Knee angle-dependent oxy­gen con­sump­tion during iso­met­ric cont­rac­tions of the knee exten­sors deter­mi­ned with near-infrared spect­rosco­py. J Appl Phy­siol. 2005;99:579-586.
  9. Dan­kel SJ, Mat­tocks KT, Jes­see MB, Buck­ner SL, Mouser JG, Loen­ne­ke JP. Do meta­bo­li­tes that are pro­duced during resis­tance exerci­se enhance muscle hypert­rop­hy? Eur J Appl Phy­siol. 2017;117(11):2125-2135.
  10. Meyers CR. Effects of two iso­met­ric rou­ti­nes on strength, size, and endu­rance in exerci­sed and nonexerci­sed arms. Res Q Exerc Sport. 1967;38(3):430-440
  11. Bals­haw TG, Mas­sey GJ, Maden-Wilkinson TM, Til­lin NA, Fol­land JP. Training-specific func­tio­nal, neu­ral, and hypert­rop­hic adap­ta­tions to explosive- vs. sustained-contraction strength trai­ning. J Appl Phy­siol. 2016;120(11):1364-1373.
  12. Schott J, McCul­ly K, Rut­her­ford OM. The role of meta­bo­li­tes in strength trai­ning: short ver­sus long iso­met­ric cont­rac­tions. Eur J Appl Phy­siol Occup Phy­siol. 1995;71(4):337-341.
  13. Kongs­gaard M, Aagaard P, Kjaer M, Mag­nus­son SP. Struc­tu­ral Achil­les ten­don pro­per­ties in ath­le­tes sub­jec­ted to dif­fe­rent exerci­se modes and in Achil­les ten­don rup­tu­re patients. J Appl Phy­siol (1985). 2005 Nov;99(5):1965-71. doi: 10.1152/japplphysiol.00384.2005. Epub 2005 Aug 4. PMID: 16081623.
  14. Aram­patzis A, Kara­ma­ni­dis K, Albracht K. Adap­ta­tio­nal res­pon­ses of the human Achil­les ten­don by modu­la­tion of the applied cyclic strain mag­ni­tu­de. J Exp Biol. 2007;210:2743-2753. 
  15. Aram­patzis A, Peper A, Bier­baum S, Albracht K. Plas­tici­ty of human Achil­les ten­don mec­ha­nical and morp­ho­lo­gical pro­per­ties in res­pon­se to cyclic strain. J Bio­mech. 2010;43(16):3073-3079.
  16. Bur­gess KE, Con­nik MJ, Graham-Smith P, Pear­son SJ. Ply­omet­ric vs iso­met­ric trai­ning influences on ten­don pro­per­tied and muscle out­put. J Strength Cond Res. 2007;21(3):986-989. 
  17. Kubo K, Kane­hi­sa H, Fuku­na­ga T. Effects of dif­fe­rent dura­tion iso­met­ric cont­rac­tions on ten­don elas­tici­ty in human quadriceps muscles. J Phy­siol. 2001;536(2):649-655.
  18. Kubo K, Ishi­ga­ki T, Ike­bu­ku­ro T. Effects of ply­omet­ric and iso­met­ric trai­ning on muscle and ten­don stiff­ness in vivo. Phy­siol Rep. 2017;5(e13374):1-13
  19. Mas­sey G, Bals­haw T, Maden-Wilkinson T, Til­lin N, Fol­land J. Ten­di­nous tis­sue adap­ta­tion to explosive- vs. sustained-contraction strength trai­ning. Front Phy­siol. 2018;9(1170):1–17.
  20. Ban­dy WD, Han­ten WP. Chan­ges in torque and elect­ro­my­ograp­hic acti­vi­ty of the quadriceps femo­ris muscles fol­lowing iso­met­ric trai­ning. Phys Ther. 1993;73(7):455-465.
  21. Barak Y, Ayalon M, Dvir Z. Trans­fe­ra­bi­li­ty of strength gains from limi­ted to full ran­ge of motion. Med Sci Sports Exerc. 2004;36(8):1413-1420. 
  22. Mas­sey CD, Vincent J, Mane­val M, Moo­re M, John­son JT. An ana­ly­sis of full ran­ge of motion vs. par­tial ran­ge of motion trai­ning in the deve­lop­ment of strength in unt­rai­ned men. J Strength Cond Res. 2004;18(3):518-521.
  23. Til­lin NA, Fol­land JP. Maxi­mal and explo­si­ve strength trai­ning elicit dis­tinct neu­ro­muscu­lar adap­ta­tions, speci­fic to the trai­ning sti­mu­lus. Eur J Appl Phy­siol. 2014;114(2):365-374. 
  24. Maf­fiu­let­ti NA, Mar­tin A. Progres­si­ve ver­sus rapid rate of cont­rac­tion during 7 wk of iso­met­ric resis­tance trai­ning. Med Sci Sports Exerc. 2001;33(7):1220-1227
  25. Alegre LM, Ferri-Morales A, Rodriguez-Casares R, Agua­do X. Effects of iso­met­ric trai­ning on the knee exten­sor moment– angle rela­tions­hip and vas­tus late­ra­lis muscle arc­hi­tec­tu­re. Eur J Appl Phy­siol. 2014;114(11):2437-2446.
  26. Bog­da­nis GC, Tsou­kos A, Met­he­ni­tis SK, Seli­ma E, Veli­ge­kas P, Terzis G. Effects of low volu­me iso­met­ric leg press complex trai­ning at two knee angles on force-angle rela­tions­hip and rate of force deve­lop­ment. Eur J Sport Sci. 2018;1-9. https://doi.org /10.1080/17461391.2018.1510989. [Epub ahead of print].
  27. Behm DG, Sale DG. Inten­ded rat­her than actual move­ment veloci­ty deter­mi­nes velocity-specific trai­ning res­pon­se. J Appl Phy­siol. 1993;74(1):359-368.
  28. Bals­haw T, Mas­sey GJ, Maden-Wil­kin­son TM, Til­lin NA, Fol­land JP. Trai­ning-speci­fic func­tio­nal, neu­ral, and hypert­rop­hic adap­ta­tions to explo­si­ve- vs. sus­tai­ned-cont­rac­tion strength trai­ning. J Appl Phy­siol (1985) 2016; 120: 1364–1373
  29. Davies J, Par­ker DF, Rut­her­ford OM, Jones DA. Chan­ges in strengh and cross sec­tio­nal area of the elbow flexors as a result of iso­met­ric strength trai­ning. Eur J Appl Phy­siol 1988; 57: 667–670
  30. Gar­fin­kel S, Cafa­rel­li E. Rela­ti­ve chan­ges in maxi­mal force, EMG, and muscle cross-sec­tio­nal area after iso­met­ric trai­ning. Med Sci Sports Exerc 1992; 24: 1220–1227
  31. Ikai M, Fuku­na­ga T. A stu­dy on trai­ning effect on strength per unit corss-sec­tio­nal area of muscle by means of ult­ra­so­nic mea­su­re­ment. Eur J Appl Phy­siol 1970; 28: 173–180
  32. Jones DA, Rut­her­ford OM. Human muscle strength trai­ning: The effects of three dif­fe­rent regi­mes and the natu­re of the resul­tant chan­ges. J Phy­siol 1987; 391: 1–11
  33. Kane­hi­sa H, Naga­re­da H, Kawa­ka­mi Y, Aki­ma H, Masa­ni K, Kouza­ki M, Fuku­na­ga T. Effects of equi­vo­lu­me iso­met­ric trai­ning pro­grams compri­sing medium or high resis­tance on muscle size and strength. Eur J Appl Phy­siol 2002; 87: 112–119
  34. Kubo K, Ohgo K, Takes­hi R, Yos­hi­na­ga K, Tsu­no­da N, Kane­hi­sa H, Fuku­na­ga T. Effects of iso­met­ric trai­ning at dif­fe­rent knee angles on the muscle-ten­don complex in vivo. Scand J Med Sci Sports 2006; 16: 159–167
  35. Noor­koiv M, Nosa­ka K, Blaze­vich AJ. Neu­ro­muscu­lar adap­ta­tions associa­ted with knee joint angle-speci­fic force chan­ge. Med Sci Sports Exerc 2014; 46: 1525–1537 
  36. Noor­koiv M, Nosa­ka K, Blaze­vich AJ. Effects of iso­met­ric quadriceps strength trai­ning at dif­fe­rent muscle lengths on dyna­mic torque pro­duc­tion. J Sports Sci 2015; 33: 1952–1961
  37. Schott J, McCul­ly K, Rut­her­ford OM. The role of meta­bo­li­tes in strength trai­ning II. Short vs. long iso­met­ric cont­rac­tions. Eur J Appl Phy­siol 1995; 71: 337–341
  38. Abe, Takas­hi, Kuma­gai, Kenya, Brec­hue, Wil­liam F. Fascicle length of leg muscles is grea­ter in sprin­ters than dis­tance run­ners, Medici­ne & Science in Sports & Exerci­se: June 2000; 32(6): 1125-1129.
  39. Kuma­gai K, Abe T, Brec­hue WF, Ryus­hi T, Taka­no S, Mizu­no M. Sprint per­for­mance is rela­ted to muscle fascicle length in male 100-m sprin­ters. J Appl Phy­siol (1985). 2000 Mar;88(3):811-6. doi: 10.1152/jappl.2000.88.3.811. PMID: 10710372.
  40. Lum, D., Bar­bo­sa, T.M., Joseph, R. et al. Effects of Two Iso­met­ric Strength Trai­ning Met­hods on Jump and Sprint Per­for­mances: A Ran­do­mized Cont­rol­led Trial. J. of SCI. IN SPORT AND EXERCI­SE 3, 115–124 (2021). https://doi.org/10.1007/s42978-020-00095-w
  41. Bals­haw T, Mas­sey GJ, Maden-Wil­kin­son TM, Til­lin NA, Fol­land JP. Trai­ning-specifc func­tio­nal, neu­ral, and hypert­rop­hic adap­ta­tions to explo­si­ve- vs. sus­tai­ned-cont­rac­tion strength trai­ning. J Appl Phy­siol. 2016;120(11):1364–73
  42. Til­lin NA, Fol­land JP. Maxi­mal and explo­si­ve strength trai­ning elicit dis­tinct neu­ro­muscu­lar adap­ta­tions, specifc to the trai­ning sti­mu­lus. Eur J Appl Phy­siol. 2014;114(2):365–74.
  43. Ron­nes­tad BR, Kvam­me NH, Sun­de A, Raas­tad T. Short-term efects of strength and ply­omet­ric trai­ning on sprint and jump per­for­mance in pro­fes­sio­nal soccer players. J Strength Cond Res. 2008;22(3):773–80
  44. Behm DG, Sale DG (1993) Inten­ded rat­her than actual move­ment veloci­ty deter­mi­nes veloci­ty-speci­fic trai­ning res­pon­se. Jour­nal of Applied Phy­sio­lo­gy 74(1):359–68.
  45. Maf­fiu­let­ti NA, Mar­tin A (2001) Progres­si­ve ver­sus rapid rate of cont­rac­tion during 7 wk of iso­met­ric resis­tance trai­ning. Medici­ne and Science in Sports and Exerci­se 33(7):1220–27.
  46. Olsen PD, Hop­kins WG (2003) The effect of attemp­ted bal­lis­tic trai­ning on the force and speed of move­ments. Jour­nal of Strength and Con­di­tio­ning Research 17(2):291–98.
  47. Vii­ta­sa­lo JT, Komi PV (1981) Effects of fati­gue on iso­met­ric force- and relaxa­tion-time cha­rac­te­ris­tics in human muscle. Acta Phy­sio­lo­gica Scan­da­vica 111(1):87–95.
  48. Oranc­huk DJ, Sto­rey AG, Nel­son AR, Cro­nin JB. Iso­met­ric trai­ning and long-term adap­ta­tions: Effects of muscle length, inten­si­ty, and intent: A sys­te­ma­tic review. Scand J Med Sci Sports. 2019 Apr;29(4):484-503. doi: 10.1111/sms.13375. Epub 2019 Jan 13. PMID: 30580468.
Mikä laite tangon liikenopeuden mittaamiseen?

Mikä laite tangon liikenopeuden mittaamiseen?

Nopeus­pe­rus­tai­nen har­joit­te­lu, eli Veloci­ty-based trai­ning (VBT), on vii­me aikoi­na tul­lut erit­täin suo­si­tuk­si. Tan­gon lii­ke­no­peu­den mit­taa­mi­sel­le on usei­ta eri käyt­tö­tar­koi­tuk­sia, kuten esi­mer­kik­si nopeu­den moni­to­roin­ti har­joit­te­lun aika­na, oikean lii­ke­no­peuss­pe­si­fin adap­taa­tion raken­ta­mi­nen, urhei­li­jan tes­taa­mi­nen tai sar­jo­jen teke­mi­nen tiet­tyyn nopeu­den vähe­ne­mi­seen saakka.

Uusia lait­tei­ta on tul­lut run­saas­ti mark­ki­noil­la ja nii­den hin­nat ovat tul­leet huo­mat­ta­vas­ti alas­päin vii­me vuo­si­na. Mit­taus­vä­li­neis­sä on kui­ten­kin pal­jon ero­ja ja jot­kin lait­teet ovat aivan tur­hia. Mihin val­men­ta­jan kan­nat­taa sijoit­taa rahan­sa, jot­ta rahoil­le saa mah­dol­li­sim­man pal­jon vastinetta?

Kiih­ty­vyy­san­tu­ri­tek­niik­kaan perus­tu­vat lait­teet näyt­tä­vät hyvil­tä ja toi­mi­vil­ta, mut­ta ovat epätarkkoja.

Lyhyt vas­taus:

Älä tuh­laa raho­ja­si kiih­ty­vyy­san­tu­rei­hin vaan sijoi­ta line­aa­ri­sen asen­non sijain­tian­tu­rei­hin. Esi­mer­kik­si: GymAwa­re, Ten­do Unit tai T-force ovat hyviä vaihtoehtoja.

Fysiikkavalmennus.fi suo­sit­te­lee:

GymAwa­re – laitetta.

+ Kes­tä­vä, todet­tu vali­dik­si, hyvä applikaatio.

- Kal­lis, sovel­luk­set vain mac:ille.

GymAwa­re on pie­ni ja sitä on help­po kul­jet­taa mukana.

Mus­ta hevonen:

Puhe­li­nappli­kaa­tiot. Erit­täin edul­li­sia ja help­po­käyt­töi­siä. Monet ovat vie­lä epä­tark­ko­ja, mut­ta päi­vi­tys­ten myö­tä tark­kuus voi mah­dol­li­ses­ti paran­tua? Esi­mer­kik­si MyLift:in saa 15 dol­la­rin sijoi­tuk­sel­la itsel­leen. Toi­saal­ta sovel­luk­sis­sa on vie­lä todel­la iso­ja vir­he­mar­gi­naa­le­ja, mut­ta edul­li­suus tekee niis­tä houkuttavia.

VBT - mit­tau­tek­nii­koi­den esit­te­ly ja kat­ta­va lai­te­lis­ta sekä pidem­mät perus­te­lut VBT-lait­tei­den tarkkuudelle.

Kultainen standardi – 3D kuvaaminen

Tar­kin tapa mita­ta lii­ke­no­peut­ta on liik­keen kuvaa­mi­nen (5,6). Kuvaa­mi­nen mit­taa myös liik­kees­sä tapah­tu­vat rotaa­tiot ja muut kier­rot, mitä mit­kään muut mene­tel­mät eivät mit­taa. Kuvaa­mi­sel­la on mah­dol­lis­ta saa­da lisää tie­toa liik­keen laa­dus­ta. Kame­ra­jär­jes­tel­män kans­sa voi pro­ses­soi­da nivel­kul­mia, tan­gon lii­ke­no­peut­ta ym. Esi­merk­ki­nä täl­lai­ses­ta jär­jes­tel­mäs­tä on Vicon – jär­jes­tel­mä. Täy­del­li­ses­sä maa­il­mas­sa urhei­li­jat teki­si­vät voi­ma­le­vyn pääl­lä suo­ri­tuk­sen, ja val­men­ta­jal­la oli­si kym­me­nen Vicon kame­raa ja jär­jes­tel­mä pyö­rit­tä­mäs­sä ana­lyy­siä. Täl­lai­sen hin­ta on kar­keas­ti noin 40 000 – 60 000 euroa, joten luul­ta­vas­ti tuo­hon ei aina­kaan minun bud­je­til­la ihan heti pääs­tä. Noin kymp­pi­ton­nil­la pää­see liik­keel­le Vicon:in kans­sa, mut­ta käy­tän­nös­sä puhu­taan siis labo­ra­to­rio­käy­tös­tä. Esi­mer­kik­si Jyväs­ky­län Yli­opis­tos­sa Lah­ti et al. (2018) ovat tut­ki­neet taka­kyy­kyn kine­ma­tiik­kaa Vicon-järjestelmällä.

Kuvaa­mi­sen plus­sat: tark­kaa dataa ja mah­dol­li­suus lisä­tä ana­lyy­siin liik­keet rotaa­tiot. Har­va lii­ke liik­kuu suo­raan ylös- tai alas­päin, joten vir­he­mar­gi­naa­lia muo­dos­tuu kai­kis­sa muis­sa mit­taus­ta­vois­sa, jos mit­tauk­sia ei teh­dä smith-laitteessa.

Hait­to­ja tuos­sa on muu­ta­mia. Esi­mer­kik­si mene­tel­män tark­kuus aiheut­taa myös ongel­mia. Mene­tel­mä mit­taa tan­gon siir­ty­mää myös hori­son­taa­li­ta­sos­sa. Tämä vai­kut­taa nopeu­den mit­taa­mi­seen ja voi teh­dä sii­tä haas­ta­vaa. Ana­lyy­sia ei voi teh­dä mit­taus­ti­lan­teen kans­sa samaa aikaan ja palau­te tulee jäl­ki­kä­teen. Val­men­ta­ja ja urhei­li­ja tar­vit­see yleen­sä palaut­teen välit­tö­mäs­ti, joten 3D kuvaa­mi­nen ei ole siis käy­tän­nöl­li­nen val­men­nus­ti­lan­tee­seen. Lisäk­si lait­teet pro­ses­soi­vat hyvin pal­jon dataa ja tämän takia alla tulee olla erit­täin suo­ri­tus­ky­kyi­nen tietokone.

Tut­ki­mus­a­se­tel­ma sii­tä, miten mita­taan tan­gon lii­ke­no­peut­ta eri­lai­sil­la tek­nii­koil­la. Täs­sä ase­tel­mas­sa oli muka­na kuusi kame­raa, kak­si puhe­lin­so­vel­lus­ta, kak­si T-Forcec mit­ta­ria ja kak­si Speed4Lift mittaria.

Lineaarisen asennon ja nopeuden sijaintianturi

Linear posi­tion trans­ducers (LPT) tai linear veloci­ty trans­ducers (LVT), eli vapaas­ti suo­men­net­tu­na line­aa­ri­sen asen­non ja nopeu­den sijain­tian­tu­rit ovat val­men­ta­jal­le täl­lä het­kel­lä ehdot­to­mas­ti paras valin­ta. Näi­tä pide­tään ”alku­pe­räi­si­nä” VBT lait­tei­na. Nii­tä on ollut ole­mas­sa vuo­si­kym­me­nen ajan nii­den yksin­ker­tai­suu­den, käyt­tä­jä­läh­töi­syy­den ja datan nopean pro­ses­soin­nin takia. Tulok­set ovat välit­tö­mäs­tä näh­tä­vis­sä. Käy­tän­nös­sä nämä toi­mi­vat niin, että naru kiin­ni­te­tään esi­mer­kik­si tan­koon ja toi­nen pää mit­taus­lait­tee­seen. Kun tan­koa lii­ku­te­taan niin naru­kin liik­kuu, joka lii­kut­taa mit­taus­lait­tees­sa ole­vaa kelaa. Kelan pyö­ri­mi­sen nopeut­ta mit­taa enkoo­de­ri, joka mit­taa kelan rota­tio­naa­lis­ta siir­ty­mää ja aikaa. Tämän perus­teel­la pys­ty­tään hyvin simp­pe­lis­ti mää­rit­tä­mään line­aa­ri­nen nopeus. Hait­ta­puo­lia lait­teis­sa on, ettei­vät ne mit­taa hori­son­taa­lis­ta siir­ty­mää. Lähes kai­kis­sa liik­keis­sä on hori­son­taa­lis­ta lii­ket­tä ja har­va lii­ke kul­kee täy­sin pys­ty­suo­raan. Jos halu­aa todel­la tark­ko­ja tulok­sia niin sit­ten kan­nat­taa käyt­tää pys­ty­suo­raa smith-lai­tet­ta, jos­sa pys­tyy teke­mään tan­gol­la vain ver­ti­kaa­lis­ta lii­ket­tä. Toi­saal­ta pie­ni hei­lun­ta vapaal­la tan­gol­la hait­taa mit­tauk­sen tark­kuut­ta vain hiu­kan, joten käy­tän­nön val­men­nuk­ses­sa sil­lä ei ole juu­ri­kaan vai­ku­tus­ta. Mit­taus­lait­teis­ton hyö­ty­jä on lait­teen yksin­ker­tai­suus, help­po­käyt­töi­syys, tark­kuus ja datan väli­tön saa­ta­vuus. Lisäk­si sovel­luk­set ovat nyky­ään help­po­käyt­töi­siä ja käy­tän­nön­lä­hei­siä sekä lait­tei­den hin­nat ovat tul­leet vii­me vuo­si­na run­saas­ti alaspäin.

SPEED4LIFT (nykyi­nen Vit­ru­ve) lai­te käy­tös­sä lattiapunnerruksessa.

Kiihtyvyysanturit

Kiih­ty­vyy­san­tu­rei­ta löy­tyy nyky­päi­vä­nä mones­ta eri elekt­ro­ni­sis­ta lait­teis­ta. Esi­mer­kik­si kän­nyk­kä las­kee askel­te­si mää­rän kiih­ty­vyy­san­tu­ril­la. Näi­tä samo­ja siru­ja myy­dään nyt eril­li­sis­sä pak­kauk­sis­sa, joi­ta voi kiin­nit­tää tan­koon. Puhe­li­men ja sirun kans­sa voi mita­ta tan­gon tai urhei­li­jan lii­ke­no­peut­ta. Kiih­ty­vyyss­mit­ta­reis­sa on val­ta­van suu­ria vir­he­mar­gi­naa­le­ja ja nii­tä ei voi mil­lään taval­la suo­si­tel­la har­joit­te­lun moni­to­roi­mi­sek­si. Esi­mer­kik­si yksi tut­ki­mus arvioi (3) kiih­ty­vyy­san­tu­rit (Push:in ja Beast:in) kai­kis­ta epä­tar­kim­mik­si tavoik­si mita­ta tan­gon lii­ke­no­peut­ta. Saman tut­ki­muk­sen mukaan LPT ja LVT, kame­ra­ku­vaus­jär­jes­tel­mät sekä puhe­li­nappli­kaa­tot oli­vat tark­ko­ja nopeu­den mit­taa­mis­ta­po­ja rajoi­te­tus­sa line­aa­ri­ses­sa liik­kees­sä (smith lait­tees­sa). Kiih­ty­vyy­san­tu­rit todet­tiin tut­ki­muk­ses­sa epä­tar­koik­si ja nii­tä ei voi suo­si­tel­la. Myös muut (7) ovat toden­neet kiih­ty­vyy­san­tu­rit erit­täin epä­tar­koik­si var­sin­kin kevyem­mil­lä kuormilla.

Puhelinapplikaatiot

Lähes jokai­sen tas­kus­ta löy­tyy nyky­ään äly­pu­he­lin, joka mah­dol­lis­taa myös tan­gon lii­ke­no­peu­den mit­taa­mi­sen kame­ran avul­la. Appli­kaa­tiot, jot­ka mah­dol­lis­ta­vat tämän ovat edul­li­sia ja tark­kuu­del­taan kiih­ty­vyy­san­tu­rei­den ver­tai­sia. MyLift on esi­merk­ki täl­lai­ses­ta sovel­luk­ses­ta. Sovel­luk­sis­sa on osoi­tet­tu ole­van vie­lä todel­la iso­ja vir­he­mar­gi­naa­le­ja. Esi­mer­kik­si MyLift sovel­luk­sen vir­he­mar­gi­naa­li oli pahim­mil­laan > 0.10 m/s, SDC > 0.23 m/s (1). Tar­koit­taen sitä, että heit­to voi olla ensim­mäi­ses­sä mit­tauk­ses­sa noin 10 pro­sent­tia alas­päin ja toi­ses­sa mit­tauk­ses­sa 10 pro­sent­tia ylös­päin. Tämä tar­koit­tai­si 20 pro­sen­tin kehi­tys­tä tie­tys­sä ajas­sa, vaik­ka todel­li­suu­des­sa urhei­li­ja oli­si täy­sin samal­la tasol­la. Täl­lai­set vir­he­mar­gi­naa­lit mit­taus­lait­teis­sa voi­vat joh­taa vir­hear­vioin­tei­hin har­joit­te­lun suun­nit­te­lus­sa ja pahim­mil­laan ohja­ta toi­min­taa ihan vää­rään suun­taan. Toi­saal­ta sovel­luk­sen aikai­sem­pi ver­sio Power­Lift on osoi­tet­tu ole­van hyvin­kin tark­ka ja vir­he­mar­gi­naa­li on aika mini­maa­li­nen (0.008 ± 0.03 m · s−1) (4). Toi­saal­ta tut­ki­muk­ses­sa ver­tail­tiin appli­kaa­tio­ta vain yhteen LPT lait­tee­seen. Tar­kem­mat tulok­set sai­si, kun ver­tail­tai­siin use­aan eri mit­taus­lait­tee­seen. Ja iso­na huo­mio­na, että tut­ki­muk­sen teki sovel­luk­sen kehit­tä­jä, joka ei ihan vas­taa kaik­kia eet­ti­siä peri­aat­tei­ta. Hyö­dyt: todel­la hal­po­ja. Hai­tat: erit­täin epätarkkoja.

Tau­luk­ko 1: Yhteen­ve­dot eri mittausmenetelmistä. 

 Hyö­dytHai­tatEsi­merk­ki­tuot­teet
3D kuvaa­mi­nenTie­teel­li­ses­ti tarkin.Kal­lis ja ei käy­tän­nöl­li­nen. Laboratioriokäyttöön. Vicon, Dart­fish
2D kuvaa­mi­nenHal­pa ja helppo.Ei tark­ka ja sovel­luk­sia vie­lä todel­la vähän. MyLift, Power­Lift,
Linear position/velocity transducersTark­ka ja hin­nat ovat tippuneet.Jot­kut vaa­ti­vat kuu­kausi­li­sens­siä. Sovel­lus­ten tasot vaihtelevat.RepO­ne, GymAwa­re, Ten­do unit, T-Force, Muscle­lab, Speed4lifts, Chronojump. 
Kiih­ty­vyy­san­tu­ritErit­täin edullisia.Epä­tark­ko­ja.Beast, Push, Barsensei 

Fysiikkavalmennus.fi suosittelee GymAwarea:

Gymawa­re on todet­tu tie­teel­li­sen tar­kak­si ja vain alle 40% 1RM kuor­mis­ta saat­taa tul­la pien­tä heit­toa (2). Lisäk­si GymAwaw­ren sovel­lus on todel­la hyvä ja käyt­tö­liit­ty­mä vai­va­ton. Esi­mer­kik­si jouk­ku­eel­le saa hel­pos­ti käyt­töön lea­der boar­din, jos­sa näkee kuka tuot­taa par­haim­man nopeu­den. Iso mii­nus sii­tä, että ohjel­mis­to pel­käs­tään Applel­le. Myös muut LPT lait­teet tark­ko­ja, esi­mer­kik­si T-force, Ten­do ja Muscle­lab (1, 7). Uusis­ta lait­teis­ta erit­täin lupaa­via ovat RepO­ne ja Speed4Lifts. Kum­mat­kin mak­sa­vat alle 400 euroa ja vai­kut­ta­vat ole­van vali­de­ja lait­tei­ta. Odo­te­taan vie­lä tut­ki­mus­tu­lok­sia uusis­ta hal­vem­man hin­ta­luo­kan lait­teis­ta. Kaik­ki kiih­ty­vyy­san­tu­rin ovat aika­lail­la kuraa ja nii­tä ei kan­na­ta ostaa.

Mik­si itse olen osta­nut Ten­don? Gymawa­re oli­si paras, mut­ta en käy­tä Applea niin olis pitä­nyt ostaa table­tit ja muut vas­taa­vat vekot­ti­met vie­lä lait­teen lisäk­si. Lisäk­si en tyk­kää sii­tä, että pitää mak­saa vuo­si­mak­su, jos halu­aa hal­li­ta useam­pia jouk­kuei­ta. Ten­do on tosi edul­li­nen laa­tun­sa näh­den. Itse ostin Blue­tooth pai­non­nos­to­ver­sion joka oli muis­taak­se­ni 1250 euroa. 1000 eurol­la oli­si saa­nut lait­teen ilman pudo­tus­suo­jaa. Lai­te antaa tar­kas­ti ja nopeas­ti tar­vit­ta­van datan. Hait­to­ja lait­tees­sa on sovel­luk­sen yksin­ker­tai­suus, joka ei mah­dol­lis­ta hir­veäs­ti temp­pu­ja. Lisäk­si Ten­do on aika iso ja pai­na­va, min­kä olen huo­man­nut vai­kut­ta­van käyt­tö­ko­ke­muk­seen. Nyt ostai­sin pie­nem­män, jota jak­sai­si aina kan­taa muka­na pit­kin kyliä.

Mus­ta hevonen:

Puhe­li­nappli­kaa­tiot. Edul­li­sia ja help­po­ja. MyLift data ris­ti­rii­tais­ta ja luul­ta­vas­ti sovel­luk­ses­sa vie­lä iso­ja vir­he­mar­gi­naa­le­ja­kin (1,4). Ja pak­ko vie­lä lisä­tä, että toi­sen tut­ki­muk­sen, mis­sä sovel­lus osoi­tet­tiin tar­kak­si, teki sovel­luk­sen kehit­tä­jä, joten tulok­sia voi hiu­kan kysee­na­lais­taa­kin. Mui­ta heik­kouk­sia tuos­sa on, että vaa­tii urhei­li­jan lii­ke­laa­juu­den mit­taa­mis­ta ennen kuvaa­mis­ta. Tääl­tä sovel­luk­sen saa esi­mer­kik­si noin 15 dol­la­ril­la. Puhe­lin­ten kame­rat ja eri­lai­set trac­king-omi­nai­suu­det mah­dol­lis­tai­si­vat jo nyt laa­duk­kaan ja tar­kan sovel­luk­sen luo­mis­ta, joten odo­te­taan uusia avauk­sia tulevaisuudessa.

Vie­lä lopuk­si lis­tat­tu­na suu­rin osa täl­lä het­kel­lä mark­ki­noil­la ole­vis­ta laitteista:

Tau­luk­ko 2: Lähes kaik­ki LPT ja kiih­ty­vyy­san­tu­ri­tek­niik­kaa hyö­dyn­tä­vät lait­teet lis­tat­tu­na. Täs­tä lis­tas­ta on help­po vali­ta itsel­le suo­sik­ki. Hin­toi­hin tulee usein pääl­le vie­lä kuljetusmaksut.

LAI­TETEK­NIIK­KALisä­tie­dot:HIN­TA (usd)+/-
Speed4LiftsLPThttps://shop.eu.vitruve.fit/397,00+ Edul­li­nen ja tark­ka
- ohjel­mis­tos­ta ei mitään tietoa
Rep OneLPThttps://reponestrength.com/399,00+ Edul­li­nen ja tark­ka
- ohjel­mis­tos­ta ei mitään tietoa
GymAwa­reLPThttps://gymaware.com/products/läh­tö­hin­ta 2060+ Pys­tyy huol­ta­maan ja kor­jai­le­maan, kes­tä­vä, moni­puo­li­sia omi­nai­suuk­sia kuten: Lea­der board, toi­mii kuin junan ves­sa
- kal­lis, vuosilisenssi.
Ten­do UnitLPThttps://www.tendosport.com/900+ Tie­teel­li­ses­ti osoi­tet­tu tar­kak­si, suh­teel­li­sen edul­li­nen
- iso ja pai­na­va, ohjel­mis­to ”kan­kea”.
T-forceLPThttp://www.tforcesystem.com/TF_english.html?!+ Käy­tet­ty run­saas­ti eri tut­ki­muk­sis­sa väli­nee­nä. Lue lisää tääl­tä. Tai­taa olla ainoa lai­te, joka ennus­taa 1RM:n suh­teel­li­sen tar­kas­ti sub­mak­si­maa­li­ses­ta kuor­mas­ta. Näyt­tää myös välit­tö­män nopeu­den vähen­ty­mi­sen edel­li­seen sar­jaan ver­rat­tu­na.
- net­ti­si­vut aika alkeel­li­set (kat­so itse :D), en ole var­ma onko ohjel­mis­toa englanniksi
Mucle­labLPThttps://www.musclelabsystem.com/products/?!+ Erit­täin hyvä lai­te, mut­ta vaa­tii jär­jes­tel­män toi­miak­seen. Enem­män tar­koi­tet­tu orga­ni­saa­tio­käyt­töön ja myy­vät mie­lel­lään isom­man pake­tin kerrallaan. 
Chro­no­jumpLPThttps://chronojump.org/product-category/encoder/496,90 ЄOsaat­ko koo­dail­la? Jos osaat niin osta ehdot­to­mas­ti tämä. Tark­ka ja erit­täin hyvä lai­te. Chro­no­jum­pin kaik­ki lait­teet perus­tu­vat samal­le ideal­le, että lait­teet ovat hyviä ja edul­li­sia, mut­ta val­mis­ta ohjel­mis­toa ei ole. Eli itse pitää vähän osa­ta koo­dail­la. Raa­kaa dataa tulee kyl­lä hyvin.
FLEX (gymawa­re)Opti­nenhttps://www.flexstronger.com/495,00+ GymAwa­ren lai­te, luo­tet­ta­va teki­jä. Mit­taa mat­kan opti­ses­ti, mut­ta vaa­tii hei­jas­tia­ma­ton toi­miak­seen. Poten­ti­aa­li­ses­ti tark­ka tapa mita­ta tan­gon lii­ke­no­peut­ta.
- Kiin­ni­te­tään tan­gon pää­hän. Jos halu­aa lait­taa lisää tai vähem­män pai­noa niin pitää irrot­taa tan­gos­ta. Kal­lis kiihtyvyysanturiksi.
Beast sen­sorKiih­ty­vyy­san­tu­rihttps://www.thisisbeast.com/en/beast-athletes279 Є+ hal­pa, hyvä sovel­lus
- Val­men­ta­ja­pak­kaus 449 Є. Tämän tar­vit­see, jos halu­aa har­joi­tus­ryh­mä­tau­lu­koi­ta ym.
Bar Sen­seiKiih­ty­vyy­san­tu­rihttps://assess2perform.com/collections/frontpage375+ Kiin­ni­te­tään tan­goon. Mah­dol­lis­taa pai­no­jen vaih­ta­mi­sen ilman lait­teen irroit­ta­mis­ta.
- Kiih­ty­vyy­san­tu­ri
PushKiih­ty­vyy­san­tu­rihttps://www.trainwithpush.com/499+ Sisäl­tää vyön ja hiha­ko­te­lon, jot­ta lait­teel­la voi­daan mita­ta myös hyp­py­kor­keut­ta ja kehon­pai­no­liik­kei­den nopeut­ta.
- Ei tarkka
Vmax­proKiih­ty­vyy­san­tu­rihttps://vmaxpro.de/vmaxpro-trainer/329+ Sovel­luk­ses­sa laa­jat omi­nai­suu­det; mm. tan­gon lii­ke­ra­dan mer­kin­tä. Saa tan­koon kiin­ni. Pai­no­jen vaih­to help­poa.
- Sovel­lus vain Apple tuot­teil­le. Val­men­ta­jal­le oma sovel­lus, joka on mak­sul­li­nen (30 dol­la­ria kuukaudessa). 

Läh­teet:

  1. Martí­nez-Cava, A., Hernán­dez-Bel­mon­te, A., Cou­rel-Ibáñez, J., Morán-Navar­ro, R., Gonzá­lez-Badil­lo, J. J., & Pal­larés, J. G. (2020). Relia­bi­li­ty of tech­no­lo­gies to mea­su­re the bar­bell veloci­ty: Implica­tions for moni­to­ring resis­tance trai­ning. PloS one15(6), e0232465. https://doi.org/10.1371/journal.pone.0232465
  2. Oran­ge, S., Metcal­fe, J., Mars­hall, P., Vince, R., Mad­den, L. & Lie­feith, A. (2018). Test-Retest Relia­bi­li­ty of a Com­mercial Linear Posi­tion Trans­ducer (GymAwa­re Power­Tool) to Mea­su­re Veloci­ty and Power in the Back Squat and Bench Press. Jour­nal of Strength and Con­di­tio­ning Research. 34. 1. 10.1519/JSC.0000000000002715.
  3. Pérez Cas­til­la, A., Pie­po­li, A., Del­ga­do, G. & Gar­ri­do, G. & García, R. (2019). Relia­bi­li­ty and Concur­rent Vali­di­ty of Seven Com­mercial­ly Avai­lable Devices for the Assess­ment of Move­ment Veloci­ty at Dif­fe­rent Inten­si­ties During the Bench Press. The Jour­nal of Strength and Con­di­tio­ning Research. 33. 10.1519/JSC.0000000000003118.
  4. Bal­sa­lobre-Fernán­dez, C., Marc­han­te, D., Muñoz López, M. & Saiz, S. (2017). Vali­di­ty and relia­bi­li­ty of a novel iPho­ne app for the mea­su­re­ment of bar­bell veloci­ty and 1-RM on the bench-press exerci­se. Jour­nal of Sports Sciences. 36. 10.1080/02640414.2017.1280610.
  5. Lorenzet­ti, S., Lam­par­ter, T. & Lut­hy F. (2017) Vali­di­ty and relia­bi­li­ty of simple ¨ mea­su­re­ment device to assess the veloci­ty of the bar­bell during squats. BMC Res Notes 10: 707.
  6. Weakley. J., Wil­son, K., Till, K., Read, D., Dar­rall-Jones, J., Roe, G., et al. (2017) Visual feed­back atte­nua­tes mean concent­ric bar­bell veloci­ty loss, and impro­ves moti­va­tion, com­pe­ti­ti­ve­ness, and percei­ved workload in male ado­lescent ath­le­tes. J Strength Cond Res. Epub ahead of print.
  7. Bany­ard, H., Nosa­ka, K., Sato, K. & Haff, G. (20179 Vali­di­ty of various met­hods for deter­mi­ning veloci­ty, force, and power in the back squat. Int J Sports Phy­siol Per­form 12: 1170–1176.
Pikajuoksijan voimaharjoittelu - osa 2 käytäntö

Pikajuoksijan voimaharjoittelu - osa 2 käytäntö

Vii­me osas­sa syven­nyt­tiin pika­juok­sun voi­ma­har­joit­te­lun teo­ri­aan. Nos­to­na huo­mio sii­tä, ettei kor­kean voi­man ja suu­ren lii­ke­no­peu­den perio­di­soin­ti peräk­käin ole jär­ke­vää pika­juok­sus­sa, vaan nii­tä kan­nat­tai­si kehit­tää rin­nak­kain kokoa­jan. Tämä joh­tuu pää­asias­sa sii­tä, että eri lihak­set tar­vit­se­vat eri­lais­ta voi­man­tuot­to­ky­kyä. Täs­sä osas­sa kes­ki­ty­tään käy­tän­nön puo­leen ja sii­hen, miten edel­lä mai­nit­tu­ja asioi­ta voi hyö­dyn­tää käy­tän­nös­sä sekä miten voi­ma­har­joit­te­luoh­jel­ma kan­nat­tai­si raken­taa pika­juok­si­jal­le. Tie­dos­sa on pal­jon video­ma­te­ri­aa­lia ja käy­tän­nön esimerkkejä. 

Alustus: mitä treenataan ja miksi?

Pikajuoksija ei välttämättä tarvitse kyykkyä ollenkaan

Kyyk­kyä pide­tään hyvä­nä liik­keen pika­juok­si­jal­le. Sen kans­sa kan­nat­taa ede­tä kui­ten­kin varo­vas­ti. Kyyk­ky on hyvä perus­voi­ma­poh­jien raken­ta­ja, mut­ta esi­mer­kik­si hypert­ro­fias­sa kehit­tää lähes täy­sin etu­rei­sien dis­taa­li­sia päi­tä. Kanes­ha et al. (2003) seu­ra­si­vat junio­ri pai­non­nos­ta­jia 18 kuu­kau­den ajan ja huo­ma­si­vat, että rei­den ojen­ta­jien poik­ki­pin­ta-ala kas­voi mer­kit­se­väs­ti dis­taa­li­sis­ta päis­tä mit­tauk­sis­sa, mut­ta ei prok­si­maa­li­sis­sa. Pai­non­nos­ta­jat kyyk­käi­li­vät syvää high-bar kyyk­ky­jä (kuva 1). Pika­juok­si­ja ei tar­vit­si­si dis­taa­li­seen pää­hän kokoa vaan nime­no­maan prok­si­maa­li­seen pää­hän. Huip­pu­juok­si­joi­den mor­fo­lo­gi­aa ver­tail­les­sa huo­nom­pi tasoi­siin juok­si­joi­hin voi­daan huo­ma­ta, että parem­mil­la juok­si­joil­la (10–10.9s) on suu­rem­pi lihas­ti­heys ylä­osas­sa reit­tä, eikä mer­kit­se­viä ero­ja vas­tus late­ra­lik­sen pak­suu­des­sa, eli dis­taa­li­ses­sa pääs­sä (Kuma­gai et al., 2010). Lisäk­si parem­mil­la juok­si­joil­la on huo­mat­tu nega­tii­vi­nen yhteys lihak­sen fasicu­luk­sen pituu­den ja ennä­ty­sa­jan välil­lä, tar­koit­taen sitä, että mitä pidem­pi lihas­säie on sitä parem­pi ennä­ty­sai­ka on. Lihas­pak­suus ei siis vält­tä­mät­tä täs­sä auta nopeu­den kehittämisessä.

Kuva 1: Run­sas kyyk­ky­har­joit­te­lu ei aiheut­ta pika­juok­si­jal­le toi­vot­tu­ja adap­taa­tioi­ta. Syvä high-bar kyyk­ky aiheut­taa eri­tyi­ses­ti rei­den dis­taa­li­sen pään kas­vua, mut­ta ei prok­si­maa­lis­ta. Eri kyyk­ky­va­ri­aa­tioil­la voi­daan saa­da eri­lai­sia adap­taa­tioi­ta eri koh­taan lihas­ta aikaan.

Pikajuoksijan moottori on pakara

Pika­juok­si­jan tehon­tuot­to väli­neen toi­mii paka­ra. Mitä nopeam­pi juok­si­ja on, sitä isom­pi paka­ra hänel­tä löy­tyy (kuva 2). Täs­tä voi­daan pää­tel­lä, että isom­paa paka­raa tar­vi­taan nopeam­paan juok­suun. Lisäk­si kovem­pi tasoi­sil­la juok­si­joil­la (10,10 ± 0,07) on sel­väs­ti pie­nem­pi ras­va­pro­sent­ti ver­rat­tu­na kes­ki­ta­son pika­juok­si­joi­hin (10,80 ± 0,30). Ras­va­pro­sen­tin alen­ta­mi­nen onkin yksi hel­poin tapa paran­taa juok­sun­opet­ta. Lii­ku­tel­ta­van mas­san mää­rä pie­ne­nee, mut­ta tehon­tuot­to pysyy samana.

Kuva 2: YLMS­portSciencen info­graa­fi Mil­le­rin ja kump­pa­nien (2020) tut­ki­muk­ses­ta, jos­sa havait­tiin, että huip­pu­pi­ka­juok­si­joil­la ver­rat­tu­na kan­sal­li­sen tason sprint­te­rei­hin on enem­män lihas­mas­saa, isom­mat paka­ra­li­hak­set ja pie­nem­pi rasvaprosentti. 

Paka­raa voi kehit­tää lan­tion­nos­toil­la ja sen eri vari­aa­tioil­la. Täs­sä esi­merk­ki­nä pika­juok­si­ja Anni­ma­ri Kor­te ja 255 kilon lantionnosto.

Vastuskelkkaharjoittelu erinomaista voimaharjoittelua

Vas­tus­kelk­ka­har­joit­te­lu on hyvä tapa kehit­tää laji­voi­maa. Usein vas­tus­kelk­ka­har­joit­te­lus­sa käy­te­tään noin 10-15% pai­no­ja kehon­pai­nos­ta. Tavoit­tee­na on yleen­sä, että mak­si­mi­no­peus ei tip­pui­si enem­pää kuin 10%. Toi­saal­ta hori­son­taa­li­seen voi­ma­har­joit­te­luun erit­täin ras­kas kelk­ka­har­joit­te­lu voi­si olla teho­kas väli­ne. Hori­son­taa­lis­ta voi­ma­har­joit­te­lua on han­ka­laa toteut­taa salil­la. Ras­kas vas­tus­kelk­ka­har­joit­te­lu mah­dol­lis­taa tilan­teen, jos­sa voi kehit­tää suu­ria voi­mia halut­tuun kul­maan (eteen­päin kal­lis­tu­nee­seen) ja saa­da aikaan suu­ren liha­sak­tii­vi­suu­den ala­raa­jo­jen lihak­sis­tos­sa. Kevyt vas­tus­kelk­ka­har­joit­te­lu ei mah­dol­lis­ta suu­ren voi­man tuot­ta­mis­ta ja ei kehi­tä voi­man­tuot­to­ky­kyä. Ras­kas vas­tus­kelk­ka­har­joit­te­lu (80% kehon­mas­sas­ta kel­kas­sa) on todet­tu ole­van teho­kas kei­no kehit­tä­mään mak­si­maa­lis­ta hori­son­taa­lis­ta voi­man­tuot­to­ky­kyä (Morin et al., 2016). Toi­voi­sin­kin näke­vä­ni enem­män myös ras­kas­ta kelk­ka­har­joit­te­lua pel­kän kevy­ei­den kelk­ka­juok­su­jen rinnalla.

Ras­kaat kelk­ka­ve­dot, jos­sa kuor­ma on oikeas­ti ras­kas, voi­man­tuot­toai­ka kor­keam­pi ja pys­ty­tään kehit­tä­mään voi­man­tuot­to­ky­kyä horisontaalisesti.

Kevyet kelk­ka­juok­sut taas toi­mi­vat enem­män laji­voi­man ja nopeu­den kehit­tä­mi­ses­sä, eivät niin­kään voi­man­tuot­to­ky­vyn kehittämisessä.

Vas­tus­kelk­ka­har­joit­te­lu saat­taa olla tehok­kaam­paa hori­son­taa­li­sen voi­man ja tehon­tuo­ton kehit­tä­mis­tä kuin perin­tei­nen voi­ma­har­joit­te­lu (Pet­ra­kos ym., 2016). Tämä joh­tui­si pää­asias­sa sii­tä, että vas­tust­kelk­ka­har­joit­te­lu tois­tai­si samaa moto­ris­ta kaa­vaa ja lihas­so­lu­jen supis­tus­tyyp­piä kuin pika­juok­su. Vas­tus­kelk­ka­har­joit­te­lu jae­taan yleen­sä kevyee­seeen (< 10% nopeu­den vähe­ne­mi­nen), kes­ki­ko­vaan (< 10-15%), ras­kaa­seen (< 15-30%) ja todel­la ras­kaa­seen (> 30%) kuor­maan (Pet­ra­kos et al., 2016). Osan perin­teis­tä voi­ma­har­joit­te­lus­ta voi kor­va­ta ras­kaal­la vas­tus­kelk­ka­ve­doil­la (Cross et al., 2018). Cross ja kump­pa­nit (2018) ehdot­ta­vat kuor­mak­si sel­lais­ta, että vauh­ti puto­aa noin 50% vähen­nys­tä mak­si­mi­no­peu­des­sa. Morin ja kump­pa­nit (2017) tes­ta­si­vat tätä käy­tän­nös­sä ja huo­ma­si­vat sel­vän eron hori­son­taa­li­ses­sa voi­man­tuot­to­ky­vys­sä, kun ver­rat­tiin nor­maa­lia juok­su­ja teh­nei­siin kont­rol­li­ryh­mään. Mie­len­kiin­tois­ta oli­si ollut näh­dä ver­taus perin­teis­tä voi­ma­har­joit­te­lua teh­nee­seen ryhmään.

Tau­luk­ko 1: Vas­tus­kelk­ka­juok­sut (resis­ted sprints) vaa­ti­vat 3-6 minuu­tin tauon suo­ri­tus­ten välis­sä ja vähin­tään pari päi­vää har­joi­tus­ses­sioi­den välis­sä. Koko­nais­vo­luu­min on syy­tä olla mata­la yhdel­lä har­joi­tus­ker­ral­la noin 50-200 met­riä. Hau­gen ym., 2019.

Trai­ning methodDis­tance (m)Inten­si­ty (%)Reco­ve­ries (min)Total ses­sion volu­me (m)Ini­tia­tionTime to next HIS (hours)Footwear and surface
Acce­le­ra­tion10–50> 982–7100–300Block/3-point/c­rouc­hed48Spi­kes on track
Maxi­mal velocity10–30a> 984–1550–150a20–40-m flying start48–72Spi­kes on track
Sprint-speci­fic endurance80–150> 958–30300–900Stan­ding start48–72Spi­kes on track
Speed endu­rance60–8090–952–4 (8–15)600–2000Stan­ding start48–72Spi­kes on track
Resis­ted sprints10–3080–95b3–650–2003-point/c­rouc­hed48Optio­nal
Assis­ted sprints10–30a≤ 1055–15≤ 100a20–40-m flying start48Spi­kes on track
Tem­po100–30060–701–31000–2000Stan­ding start24Trai­ners on grass
a. Inten­si­ty is expres­sed in percent of maxi­mal veloci­ty. Reco­ve­ry = time between repe­ti­tions (sets). HIS = high-inten­si­ve ses­sion
b. Flying start dis­tance exclu­ded
c. The percei­ved effort is maxi­mal, so the veloci­ty decli­ne is caused by resis­tance loading

Voimaharjoittelua lonkan ojentajille ja koukistajille korkeammilla nopeuksilla

Hori­son­taa­li­voi­maa ja lon­kan aluet­ta tulee kehit­tää eri­tyi­ses­ti myös nopeam­mil­la lii­ke­no­peuk­sil­la kuten ensim­mäi­ses­sä osas­sa käy­tiin läpi. Toi­sin kuin tule­vis­sa videois­sa niin jokai­nen lii­ke tulee suo­rit­taa mak­si­maa­li­sel­la liikenopeudella!

Kumi­nau­ha kahvakuulaheilautus:

Lon­kan kou­kis­tus – voi teh­dä myös ojen­nuk­sen – mal­lin­taa hei­laus­vai­het­ta (kevyt kuor­ma, nopeasti!):

Mui­ta hori­son­taa­li­sen voi­man kehit­tä­viä loikkia:

Yhden jalan nopea hyp­py eteenpäin:

Nopeus­loik­ka:

Suo­rin jaloin sak­si­loik­ka (lisä­pai­no kevyes­tä vastuskelkasta):

Polven alueen lihaksiston vahvistaminen

Näi­tä kan­nat­taa teh­dä har­joit­te­lun lop­pu­puo­lel­la kun on ensik­si teh­ty nopean lii­ke­no­peu­den liik­keet. Pol­ven alu­een lihak­sis­to ottaa juok­sun aika­na suu­ria voi­mia vas­taan eksent­ri­ses­ti ja nii­den vah­vis­ta­mi­nen on äärim­mäi­sen tärkeää.

NFL pelaa­jan vakuut­ta­vaa teke­mis­tä nor­dic ham­string rai­se liikkeessä:

Lisät­ty eksent­ri­nen kuor­ma taka­rei­si­kou­kis­tuk­seen. Kan­nat­taa käyt­tää sel­lais­ta pai­noa, jota yhdel­lä jalal­la ei sai­si ylös:

Rever­se nor­dic, eli etu­rei­den har­joit­ta­mis­ta eksent­ri­ses­ti. Haas­tet­ta saa kasaa­mal­la lisä­pai­noa syliin. 

Iso­met­ri­set taka­rei­sil­le. Näi­hin kan­nat­taa raken­taa progres­sio niin, että tavoit­tee­na on käyt­tää lisä­pai­no­na 50% kehon­pai­nos­ta ja tavoit­tee­na pitää hel­pos­ti yhdel­lä jalal­la 30s asen­toa yllä. Tar­koit­taen, että 100 kiloi­nen mies jak­sai­si pitää hel­pos­ti 50 kilon kuor­maa ja 30s asen­toa yllä yhdel­lä jalalla.

Vertikaalivoima

Ver­ti­kaa­li­voi­maa on jär­ke­vä kehit­tää sopi­vis­sa mää­rin. Eri­tyi­ses­ti paka­ran ja poh­kei­den har­joit­ta­mi­nen on tär­ke­ää pika­juok­sun kannalta.

Askel­kyyk­ky­hyp­pe­ly. Käsi­pai­nois­ta lisävastusta.

Askel­kyyk­ky korok­keel­ta ja lisä­pai­noa roh­keas­ti nis­kaan. Pika­juok­si­ja voi vie­lä progres­soi­da lii­ket­tä läh­te­mäl­lä pol­ven­nos­toa­sen­nos­ta ja kaa­tu­mal­la eteen­päin, jot­ta mak­si­moi­daan eksent­ri­nen kuormitus:

Roma­nia­lai­nen maas­ta­ve­to (voi­man­tuot­to­käy­rää voi muo­ka­ta kumi­nau­hoil­la tai ket­juil­la) on erin­omai­nen like taka­ket­jun kehit­tä­mi­seen. Täs­tä puo­li uni­la­te­raa­li­nen ver­sio, eli split stance Roma­nian dead­lift. Täs­sä toi­nen jal­ka antaa hie­man tukea. Tyk­kään tosi pal­jon itse lait­taa tätä urhei­li­joil­le. Asen­to mah­dol­li­saa suu­rem­man pai­non käyt­tä­mi­sen ver­rat­tu­na yhden jalan ver­sioon, kos­ka tasa­pai­no pysyy parem­min, mut­ta sil­ti pys­tyy kes­kit­ty­mään yhden jalan teke­mi­seen parem­min kuin kah­del­la jalalla.

Kun­to­pal­lo­va­ri­aa­tioi­ta on monia, mut­ta täs­sä yksi. Kun­to­pal­lon heit­to ylös­päin. Näis­sä vain mie­li­ku­vi­tus on rajana.

Tem­paus työn­tö­ot­teel­la roikunnasta:

Raa­ka rin­nal­le­ve­to roikunnasta:

Bok­sil­le nousu hypyl­lä. Lisä­pai­noa taas käsipainoista.

Trap-bar hypyt:

Tan­ko­hy­pyt puolikyykystä:

Työn­tö­ve­to:

Flyw­heel lait­teil­la taka­rei­det. Lait­tei­den käyt­tö perus­tuu nopeam­mal­le ja aggres­sii­vi­sem­mal­le eksent­ri­sel­le vai­heel­la, mikä aut­taa pika­juok­si­jaa kehit­tä­mään nime­no­maan jar­ru­ta­via voi­man­tuot­to omi­nai­suuk­sia, mitä tar­vi­taan pol­ven alu­een lihak­sis­tol­le. Mitä enem­män ja nopeam­min tuot­taa voi­maa kon­sent­ri­ses­sa vai­hees­sa, sitä enem­män kiek­ko pyö­rii, ja vetää taas urhei­li­jaa eksent­ri­ses­sä vai­hees­sa alas­päin. Täten eksent­ri­nen vai­he on nopeam­pi ja vaa­ti­vam­pi ver­rat­tu­na nor­maa­liin voi­ma­har­joit­te­luun. Eksent­ri­nen vai­he saa­kin aikaan vauh­ti­pyö­rä­har­joit­te­lun pääharjoitusvasteen.

Eri­lai­sia lii­ke­va­ri­aa­tioi­ta ver­ti­kaa­li­voi­man kehit­tä­mi­seen flyw­heel laitteella:

Poh­kei­den har­joit­te­le­mi­nen moni­puo­li­ses­ti. Esi­mer­kik­si eri­lais­ten juok­sudril­lien teke­mi­nen lisä­pai­non kans­sa joko nis­kas­sa tai pään pääl­lä. Lisäk­si iso­met­ri­nen har­joit­te­lu on erit­täin teho­kas­ta pohkeille:

Täs­sä oli lis­tat­tu­na eri­lai­sia vari­aa­tioi­ta, joil­la voi kehit­tää pika­juok­si­jan voi­man­tuot­to-omi­nai­suuk­sia. Näis­sä kah­des­sa artik­ke­lis­sa on käy­ty läpi suh­teel­li­sen kat­ta­vas­ti pika­juok­si­jan voi­ma­har­joit­te­lu teo­ria ja käy­tän­tö. Koko pake­tin vetä­mi­nen kasaan, ohjel­moin­ti, progres­sion raken­ta­mi­nen ja perio­di­saa­tio jää val­men­ta­jan har­teil­le, jos sii­hen kai­paa apua niin ota yhteyt­tä. Tsem­pit reeneihin!

Lähteet:

Askling, C., Karls­son, J., & Thors­tens­son, A. (2003, August). Ham­string inju­ry occur­rence in eli­te soccer players after pre­sea­son strength trai­ning with eccent­ric over­load. Ret­rie­ved from https://www.ncbi.nlm.nih.gov/pubmed/12859607

Baker, D., and Nance, S. The Rela­tion Between Run­ning Speed and Mea­su­res of Strength and Power in Pro­fes­sio­nal Rug­by Lea­gue Players. J. Strength Cond. Res.13(3): 230-235, 1999.

Beh­rens, M., Mau-Moel­ler, A., Muel­ler, K., Hei­se, S., Gube, M., Beus­ter, N., … Bruhn, S. (2015, Februa­ry 4). Ply­omet­ric trai­ning impro­ves volun­ta­ry acti­va­tion and strength during iso­met­ric, concent­ric and eccent­ric cont­rac­tions. Ret­rie­ved from https://www.sciencedirect.com/science/article/pii/S1440244015000377

Bosch, F., and Klomp, R. Run­ning: Bio­mec­ha­nics and Exerci­se Phy­sio­lo­gy Applied in Prac­tice. Phi­la­delp­hia, PA: Else­vier, 2005.

Čoh, M., & Zvan, M., Velič­kovs­ka, L., Ziv­ko­vic, V. & Gon­ta­rev, S. (2016). BIO­DY­NA­MICAL FAC­TORS OF RUN­NING SPEED DEVE­LOP­MENT. 5. 17-22.

Colyer, S. L., Sto­kes, K. A., Bilzon, J. L. J., Holdc­roft, D., & Salo, A. I. T. (2018, April 1). Trai­ning-Rela­ted Chan­ges in Force-Power Pro­fi­les: Implica­tions for the Ske­le­ton Start. Ret­rie­ved from https://www.ncbi.nlm.nih.gov/pubmed/28872389

Cross MR, Lah­ti J, Brown SR, Che­da­ti M, Jime­nez-Reyes P, Samozi­no P, et al. Trai­ning at maxi­mal power in resis­ted sprin­ting: opti­mal load deter­mi­na­tion met­ho­do­lo­gy and pilot results in team sport ath­le­tes. PLoS One. 2018;13(4):e0195477.

Cro­nin, J., Ogden, T., Law­ton, T., and Brug­hel­li, M. Does Inc­rea­sing Maxi­mum Strength Impro­ve Sprint Run­ning Per­for­mance. 29(3): 86-95, 2007.

Cun­ha, L., Alves, F., & Velo­so, A. (2002). The touch-down and takeoff angles in dif­fe­rent pha­ses of 100 m sprint run­ning. Pre­sen­ta­tion at the Inter­na­tio­nal Sym­po­sium on Bio­mec­ha­nics in Sport, Cace­res-Ext­re­ma­du­ra, Spain.

Ers­ki­ne, R. M., Jones, D. A., Maf­ful­li, N., Wil­liams, A. G., Stewart, C. E., & Degens, H. (2011, Februa­ry). What causes in vivo muscle speci­fic ten­sion to inc­rea­se fol­lowing resis­tance trai­ning? Ret­rie­ved from https://www.ncbi.nlm.nih.gov/pubmed/20889606

Hau­gen, T., Sei­ler, S., Sand­bakk, Ø. et al. The Trai­ning and Deve­lop­ment of Eli­te Sprint Per­for­mance: an Inte­gra­tion of Scien­ti­fic and Best Prac­tice Lite­ra­tu­re. Sports Med - Open 5, 44 (2019). https://doi.org/10.1186/s40798-019-0221-0

Huc­teau, E., Jubeau, M., Cor­nu, C. et al. Is the­re an inter­muscu­lar rela­tions­hip in volun­ta­ry acti­va­tion capaci­ties and cont­rac­ti­le kine­tics?. Eur J Appl Phy­siol 120, 513–526 (2020). https://doi.org/10.1007/s00421-019-04299-z

Januse­vicius, D., Sniec­kus, A., Skur­vy­das, A., Silins­kas, V., Trin­ku­nas, E., Cade­fau, J. A., & Kaman­du­lis, S. (2017, June 1). Effects of High Veloci­ty Elas­tic Band ver­sus Hea­vy Resis­tance Trai­ning on Ham­string Strength, Acti­va­tion, and Sprint Run­ning Per­for­mance. Ret­rie­ved from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5465986/

Kane­hi­sa H, Funa­to K, Kuno S, et al. Growth trend of the quadriceps femo­ris muscle in junior Olym­pic weight lif­ters: an 18-month fol­low-up sur­vey. Eur J Appl Phy­siol 2003; 89: 238-42.

Kuma­gai K, Abe T, Brec­hue WFet al. Sprint per­for­mance is rela­ted to muscle fascicle length in male 100-m sprin­ters. J Appl Phy­siol 2000; 88: 811-6.

Mil­ler R, Bals­haw TG, Mas­sey GJ, Maeo S, Lanza MB, Johns­ton M, Allen SJ, Fol­land JP. The Muscle Morp­ho­lo­gy of Eli­te Sprint Run­ning. Med Sci Sports Exerc. 2020 Oct 1. doi: 10.1249/MSS.0000000000002522. Epub ahead of print. PMID: 33009196.

Morin, J.-B., Pet­ra­kos, G., Jimé­nez-Reyes, P., Brown, S. R., Samozi­no, P., & Cross, M. R. (2017, July). Very-Hea­vy Sled Trai­ning for Impro­ving Horizon­tal-Force Out­put in Soccer Players. Ret­rie­ved from https://www.ncbi.nlm.nih.gov/pubmed/27834560

Morin JB, Pet­ra­kos G, Jimé­nez-Reyes P, Brown SR, Samozi­no P, Cross MR. Very-hea­vy sled trai­ning for impro­ving horizon­tal-force out­put in soccer players. Int J Sports Phy­siol Per­form. 2017;12(6):840–4.

Naga­ha­ra R, Zus­hi K. Deve­lop­ment of maxi­mal speed sprin­ting per­for­mance with chan­ges in ver­tical, leg and joint stiff­ness. J Sports Med Phys Fit­ness. 2017 Dec;57(12):1572-1578. doi: 10.23736/S0022-4707.16.06622-6. Epub 2016 Jul 13. PMID: 27406013.

Naga­no, A., & Komu­ra, T. (2003, Novem­ber). Lon­ger moment arm results in smal­ler joint moment deve­lop­ment, power and work out­puts in fast motions. Ret­rie­ved from https://www.ncbi.nlm.nih.gov/pubmed/14522209

Pet­ra­kos G, Morin JB, Egan B. Resis­ted sled sprint trai­ning to impro­ve sprint per­for­mance: a sys­te­ma­tic review. Sports Med. 2016;46(3):381–400.

Poliquin, C., Pat­ter­son, Paul. Ter­mi­no­lo­gy: Clas­si­fica­tion of Strength Qua­li­ties. Strength Con­di­tio­ning J. 11(6):48-52, 1989.

Reich, T. E., Linds­tedt, S. L., LaS­tayo, P. C., & Pie­rot­ti, D. J. (2000, June). Is the spring qua­li­ty of muscle plas­tic? Ret­rie­ved from https://www.ncbi.nlm.nih.gov/pubmed/10848536

Ross, S. A., & Wake­ling, J. M. (2016, June). Muscle shor­te­ning veloci­ty depends on tis­sue iner­tia and level of acti­va­tion during sub­maxi­mal cont­rac­tions. Ret­rie­ved from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4938035/

Schac­he, A. G., Blanch, P. D., Dorn, T. W., Brown, N. A. T., Rose­mond, D., & Pan­dy, M. G. (2011, July). Effect of run­ning speed on lower limb joint kine­tics. Ret­rie­ved from https://www.ncbi.nlm.nih.gov/pubmed/21131859

Siff, MC. Supert­rai­ning. Den­ver, CO: Supert­rai­ning Ins­ti­tu­te, 2003.

Widrick, J. J., Stelzer, J. E., Shoe­pe, T. C., & Gar­ner, D. P. (2002, August). Func­tio­nal pro­per­ties of human muscle fibers after short-term resis­tance exerci­se trai­ning. Ret­rie­ved from https://www.ncbi.nlm.nih.gov/pubmed/12121854

Wil­son, G., New­ton, R., Murp­hy, A. & Humph­ries, B. (1993) The opti­mal trai­ning load for the deve­lop­ment of dyna­mic ath­le­tic per­for­mance. Med Sci Sports Exerc. Nov;25(11):1279-86. PMID: 8289617.

Pikajuoksijan voimaharjoittelu – osa 1 teoria

Pikajuoksijan voimaharjoittelu – osa 1 teoria

Tii­vis­tel­mä tekstistä:

  • Perin­tei­nen hidas voi­ma­har­joit­te­lu ei aiheu­ta pika­juok­si­jaa kehit­tä­viä adaptaatioita
  • Lon­kan ojen­ta­jil­le ja kou­kis­ta­jil­le voi­ma­har­joit­te­lua nopeal­la voimantuotolla
  • Rei­den ojen­ta­jil­le ja kou­kis­ta­jil­le har­joit­te­lus­sa tulee kes­kit­tyä taas kor­keam­paan voi­man­tuot­to­ky­kyyn, kos­ka juok­sus­sa pol­ven alu­een lihak­set mah­dol­lis­ta­vat kor­kean juok­su­no­peu­den vas­taa­not­ta­mal­la suu­ria voi­mia eksentrisesti.
  • Nilk­ka vas­taa suu­rel­ta osin kon­tak­ti­vai­heen voi­man­tuo­tos­ta. Nil­kan vah­vis­ta­mi­nen pika­juok­sun omai­sil­la har­joit­teil­la on tärkeää.
  • Käy­tän­nös­sä: samas­sa har­joi­tuk­ses­sa ensik­si kor­kean nopeu­den liik­kei­tä lon­kan alu­eel­la ja tämän jäl­keen eksent­ris­tä har­joit­te­lua pol­ven alu­een lihaksille.

”Voi­ma­har­joit­te­lu tekee hitaak­si” - on suh­teel­li­sen ylei­ses­ti kuul­tu lausah­dus. Nyky­ään tämä myyt­ti on jo onnek­si puret­tu ja voi­ma­har­joit­te­lua käy­te­tään enem­män myös nopeu­den kehit­tä­mi­ses­sä, mut­ta mikä on oikea mää­rä ja tapa käyt­tää voi­ma­har­joit­te­lua, jos tavoit­tee­na on mak­si­maa­li­sen nopeu­den kehit­tä­mi­nen, eikä pel­käs­tään alku­kiih­dyt­tä­mi­sen parantaminen?

Pika­juok­si­jan, eli 100–200 met­rin juok­si­jan, voi­ma­har­joit­te­lu ei ole niin yksin­ker­tais­ta kuin sen voi­si kuvi­tel­la ole­van. Voi­ma­har­joit­te­lu kehit­tää lähes suo­raan räjäh­tä­väm­män star­tin ja parem­man kiih­dy­tyk­sen, mut­ta entä voi­ko voi­ma­har­joit­te­lul­la vai­kut­taa mak­si­mi­juok­su­vai­hee­seen ja maksimijuoksunopeuteen?

Pika­juok­su ja voi­man eri lajit

Juok­su voi­daan jakaa kar­keas­ti kiih­dyt­tä­mi­seen ja mak­si­mi­juok­su­vai­hee­seen. Mones­sa tut­ki­muk­ses­sa on löy­det­ty voi­ma­har­joit­te­lun ja kiih­dyt­tä­mi­sen yhteys, mut­ta voi­ma­har­joit­te­lun yhteys mak­si­mi­juok­su­vai­hee­seen on aiheut­ta­nut ris­ti­rii­tai­sia tut­ki­mus­tu­lok­sia (esim. Wil­son et al., 1993).

Pika­juok­si­ja tar­vit­see pää­asias­sa nopeus­voi­maa. Nopeus­voi­man voi mää­ri­tel­lä her­mo­li­has­jär­jes­tel­män kyvyk­si tuot­taa mah­dol­li­sim­man pal­jon voi­maa lyhyim­mäs­sä mah­dol­li­sim­mas­sa ajas­sa (Poliquin & Pat­ter­son, 1989).  Pika­juok­sus­sa nopeus­voi­ma­suo­ri­tus­ky­kyä voi paran­taa kehit­tä­mäl­lä voi­man­tuot­to­no­peut­ta, mak­si­mi­voi­ma­ta­so­ja tai kum­paa­kin samaan aikaan. Pika­juok­si­ja tar­vit­see siis tie­tyn ver­ran mak­si­mi­voi­maa­kin. Mak­si­mi­voi­maa kehit­tääk­seen voi olla jär­ke­vä jos­sain mää­rin kehit­tää myös perus­voi­maa ja ken­ties lihas­ten kokoa. Lisäk­si tar­vi­taan nopeus­voi­man koh­dal­la eri­lai­sia omi­nai­suuk­sia, kuten:

  • Läh­tö­voi­maa
  • Räjäh­tä­vää voimaa
  • Reak­tii­vis­ta voimaa

Läh­tö­voi­ma tar­koit­taa voi­man tuot­ta­mis­ta staat­ti­ses­ta asen­nos­ta ja kehon­pai­nom­me iner­tian ylit­tä­mis­tä. Tätä tar­vi­taan eri­tyi­ses­ti ensim­mäi­ses­sä aske­lees­sa. Onkin hyvin loo­gis­ta, että voi­ma­har­joit­te­lu kehit­tää juu­ri ensim­mäi­siä aske­lia huomattavasti.

Räjäh­tä­vä voi­ma taas on kykyä jat­ku­vas­ti kas­vat­taa voi­maa aikayk­sik­kö koh­den, kun lii­ke on jo aloi­tet­tu. Reak­tii­vi­nen voi­ma tar­koit­taa taas kehon kykyä vaih­taa nopeas­ti eksent­ri­ses­tä supis­tuk­ses­ta kon­sent­ri­seen supis­tuk­seen. Täs­sä kyvys­sä koros­tuu eri­tyi­ses­ti her­mo­li­has­jär­jes­tel­män kyky mak­si­moi­da veny­mis-lyhe­ne­mis-syklus. Reak­tii­vi­nen voi­ma kehit­tyy myös, kun lihak­sen jäyk­kyys lisään­tyy ja elas­ti­set omi­nai­suu­det kehit­ty­vät. (Bosch & Klomp, 2005; Siff, 2003; Poliquin & Pat­ter­son, 1989.) Har­joi­tuk­sel­li­ses­ti voim­me vie­lä jakaa edel­lä mai­ni­tut voi­mat eksent­ri­siin, kon­sent­ri­siin ja iso­met­ri­siin komponentteihin.

Kuva 1: Juok­sus­sa rasit­tu­vat eri­tyi­ses­ti poh­keet, taka­rei­det, paka­rat ja selän ojen­ta­jat. Lisäk­si vat­sa­li­hak­set ja olka­päät teke­vät kovas­ti töi­tä juok­sun ryt­mi­tyk­sen ja asen­non hal­lin­nan kans­sa. Juok­sun kon­tak­ti­vai­hees­sa eri­tyi­ses­ti poh­je­li­has tekee kovas­ti töi­tä (Čoh et al., 2016)

Läh­dös­sä tar­vi­taan kon­sent­ris­ta voi­man­tuot­toa – mak­si­mi­juok­su­vai­hees­sa reak­tii­vis­ta voimaa

Mak­si­maa­li­sel­la voi­mal­la ja 10 m sekä 30 m juok­sua­joil­la ei ole mer­kit­se­vää yhteyt­tä, mut­ta kun yhtä­löön lisä­tään juok­si­jan kehon­pai­no, niin löy­de­tään tilas­tol­li­ses­ti mer­kit­se­vä yhteys (Baker et al., 1999; Cro­nin et al., 2007). Bake­rin ja kump­pa­nei­den tut­ki­muk­ses­sa myös huo­mat­tiin, että 10 m tulos oli yhtey­des­sä suh­teel­li­seen voi­man­tuot­toon ja kon­sent­ri­seen voi­man­tuot­to kykyi­hin. Läh­dös­sä kon­sent­ri­sen voi­man kehit­tä­mi­ses­tä on hyö­tyä, kos­ka mer­kit­se­vää veny­mis­ly­he­ne­mis-syklus­ta ei tapah­du. Lisäk­si läh­dös­sä kon­tak­tiai­ka on suu­rem­pi kuin juok­sun muis­sa vai­heis­sa ja tämä mah­dol­lis­taa suu­rem­man voi­man hyö­dyn­tä­mi­sen askel­kon­tak­tin aika­na (tau­luk­ko 1).

TAU­LUK­KO 1: Kes­kiar­vol­li­set kine­maat­ti­set muut­tu­jat 100 met­rin juok­sus­sa hyvin har­joi­tel­leil­la pika­juok­si­joil­la (Cun­ha et al., 2002).

Juok­sun vaiheNopeus (m/s)Askel­pi­tuus (m)Askel­fre­kvens­si (Hz)Kon­tak­tiai­ka (s)Len­toai­ka (s)
Kiih­dy­tys9,804,162,360,100,12
Mak­si­mi­juok­su­vai­he10,464,482,340,080,13
Yllä­pi­to9,854,362,260,100,13

Mak­si­maa­li­nen juok­su taas yhdis­te­tään pys­tym­pään juok­sua­sen­toon, jon­ka tar­koi­tuk­se­na on mak­si­moi­da askel­pi­tuus, askel­fre­kvens­si ja mini­moi­da kon­tak­tiai­ka. Tämä pys­tym­pi juok­sua­sen­to joh­taa suu­rem­piin veri­kaa­li­siin ja jar­rut­ta­viin voi­miin ver­rat­tu­na kiih­dy­tys­vai­hee­seen (kuva 2). Nämä voi­mat tuot­ta­vat suu­ria veny­tys­voi­mia lihak­siin ja näin luo­vat isom­man tar­peen veny­mis­ly­he­ne­mis kyvyil­le lihak­sis­sa. Jot­ta näi­tä voi­mia voi­daan hyö­dyn­tää mak­si­maa­li­ses­ti, tulee kehit­tää elastista/reaktiivista voi­maa. Lihak­sen kyky kont­rol­loi­da suu­ria voi­mia eksent­ri­sis­sä tai iso­met­ri­sis­sä supis­tuk­sis­sa on äärim­mäi­sen tär­keä har­joi­tet­ta­va omi­nai­suus. Ilman sitä reak­tii­vi­nen voi­ma ei voi kehittyä.

Kuva 2: Kon­tak­ti­vai­hees­sa ver­ti­kaa­li­voi­mat koros­tu­vat (Čoh et al., 2016).

Voi­ma­har­joit­te­lu ensik­si ja sit­ten nopeus - ajat­te­lu romukoppaan

Pika­juok­si­jat teke­vät yleen­sä voi­ma­har­joit­te­lus­saan kai­kil­le lihak­sil­le saman­lais­ta voi­maa. Tämä ei tuo­ta opti­maa­li­sin­ta lop­pu­tu­los­ta ja saat­taa jopa hidas­taa koke­nei­ta urhei­li­joi­ta. Pika­juok­si­jan voi­ma­har­joit­te­lun perio­di­saa­tio perus­tuu vää­ril­le olet­ta­muk­sil­le. Perin­tei­ses­ti ensik­si voi­ma­har­joit­te­lul­la nos­te­taan mak­si­mi­voi­ma­re­ser­viä. Tämän jäl­keen teh­dään voi­ma­har­joit­te­lua lyhyil­lä voi­man­tuot­toa­joil­la. Tavoit­tee­na saa­da kas­va­nut mak­si­mi­voi­ma­re­ser­vi käyt­töön jäl­kim­mäi­sel­lä jak­sol­la (kuva 3). Tämä ei ole teho­kas tapa koke­neel­le urheilijalle.

Kuva 3: Perin­tei­sen perio­di­saa­tion mukaan on ensik­si tar­koi­tus ope­tel­la tuot­ta­maan pal­jon voi­maa. Tämän jäl­keen yri­te­tään tuot­taa samaa voi­maa kor­keal­la nopeu­del­la, eli teh­dään enem­män spe­si­fiä voi­ma­har­joit­te­lua ja yri­te­tään saa­da voi­ma siir­ty­mään lajiin. Täl­löin perin­tei­sen voi­ma­har­joit­te­lun osuus pienenee.

Tar­vi­taan­ko perin­teis­tä hidas­ta voi­ma­har­joit­te­lua ollenkaan?

Aja­tus sii­tä, että voi­ma­har­joit­te­lu tuot­taa poh­jan, jot­ta nopeut­ta voi­daan kehit­tää, on vää­ris­ty­nyt. Vält­tä­mät­tä täl­lais­ta yleis­tä voi­ma­har­joit­te­lu­jak­soa ei tar­vi­ta ollen­kaan. Tämä joh­tuu sii­tä, että kova voi­ma­har­joit­te­lu tuot­taa kol­men­lais­ta tär­ke­ää adaptaatiota:

  1. Moto­ri­sen yksi­kön rek­ry­toin­ti paranee
  2. Late­raa­li­sen voi­man siir­ty­mi­nen paranee
  3. Lihas kas­vaa, eli tapah­tuu hypertrofiaa

Nämä adap­taa­tiot eivät ole tär­kei­tä pika­juok­sun kan­nal­ta ja tar­vit­ta­vat adap­taa­tiot voi­daan saa­vut­taa muul­la­kin taval­la kuin perin­tei­sel­lä hitaal­la voimaharjoittelulla.

Ensim­mäi­sen adap­taa­tion, eli moto­ri­sen yksi­kön rek­ry­toi­mis­ta voi­daan kehit­tää myös kor­keil­la voi­man­tuot­to­no­peuk­sil­la (Beh­rens et al., 2015). Sen kehit­tä­mi­seen ei tar­vi­ta vält­tä­mät­tä ollen­kaan perin­teis­tä voi­ma­har­joit­te­lua. Toi­sen adap­taa­tion, eli paran­tu­neen late­raa­li­sen voi­man­tuo­ton siir­ty­mi­nen ei paran­na nope­aa voi­man­tuot­toa, joten sekään ei ole tär­keä pika­juok­sun kan­nal­ta (Ers­ki­ne et al., 2011).

Kol­man­nel­la adap­taa­tiol­la, eli hypert­ro­fial­la on mer­ki­tyk­sen­sä nope­aan voi­man­tuot­toon, mut­ta sii­hen liit­tyy muu­ta­ma poh­dit­ta­va asia. Ensin­nä­kin hypert­ro­fi­nen har­joit­te­lu joh­taa yleen­sä nopeim­man IIX lihas­tyy­pin muut­tu­mi­sek­si IIA lihas­so­luk­si. IIA on hitaam­pi lihas­so­lu, joten tämä ei ole halut­ta­vaa pika­juok­si­jal­la. (Widrick et al., 2002.)

Toi­sek­si hypert­ro­fi­nen har­joit­te­lu joh­taa lihak­sen­kas­vuun ja näin sisäi­sen vipu­var­ren kas­vuun, joka aiheut­taa sen, että lihas­so­lu­jen pitää supis­tua vie­lä nopeam­min, jot­ta saa­vu­te­taan sama vipu­var­ren kul­ma­no­peus (Naga­no & Komu­ra, 2003). Tämä joh­tuu sii­tä, että lihak­sen sisäi­sen vipu­var­ren kas­vaes­sa pitää lihas­so­lu­jen supis­tua pidem­mäl­le saa­vut­taak­seen saman nive­len lii­ke­laa­juu­den ja ottaak­seen kiin­ni tämän pidem­män mat­kan tulee lihas­so­lu­jen supis­tua nopeam­min saa­vut­taak­seen saman nivelkulmanopeuden.

Kol­man­nek­si kudok­sen iner­tia kas­vaa, kun lihas­mas­sa lisään­tyy, mikä joh­taa tie­ten­kin hidas­tu­nee­seen nopeu­teen (Ross & Wake­linf, 2016).

Vii­mei­sek­si kova voi­ma­har­joit­te­lu joh­taa lisään­ty­nee­seen anta­go­nis­tien (vas­ta­vai­kut­ta­ja­li­has­ten) koak­ti­vaa­tion nive­lis­sä nopeis­sa liik­keis­sä. Tämä voi hidas­taa juok­su­no­peut­ta. (Januse­vicius et al., 2017.) Tämä joh­tuu luul­ta­vas­ti sii­tä, että keho yrit­tää suo­jel­la isom­paa lihas­ta vau­rioil­ta akti­voi­mal­la vas­ta­vai­kut­ta­ja­li­has­ta, mikä hidas­taa pää­vai­kut­ta­ja­li­hak­sen supis­tu­mis­no­peut­ta. Kovan voi­ma­har­joit­te­lun on näy­tet­ty vähen­tä­vän mak­si­maa­lis­ta nopeut­ta (Colyer et al., 2018) mm. edel­lä mai­nit­tu­jen seik­ko­jen takia, mut­ta myös voi­ma­har­joit­te­lun aiheut­ta­man väsy­myk­sen takia.

Jos­kus hypert­ro­fial­la on paik­kan­sa isom­paa koko­nai­suut­ta raken­taes­sa, mut­ta eivät­kö nopeat liik­keet aiheut­tai­si hypert­ro­fi­sia adap­taa­tioi­ta, jos ne oli­si­vat elin­tär­kei­tä nopeal­la liik­keel­le? Näin ei ikä­vä kyl­lä ole ja sen takia hypert­ro­fis­ta har­joit­te­lua pika­juok­si­jal­le tulee pun­ni­ta tarkkaan.

Vie­lä lisäyk­se­nä, että etu- ja taka­rei­sil­le on pys­tyt­ty saa­maan lisää eksent­ris­tä voi­maa ilman kovaa perin­teis­tä voi­ma­har­joit­te­lua pel­käs­tään teke­mäl­lä eksent­ris­tä voi­ma­har­joit­te­lua (Reich et al., 2000). Nämä adap­taa­tiot ovat luul­ta­vim­min joh­tu­neet titi­nin ja kol­la­gee­nin adap­toi­tu­mi­ses­ta lihak­sen sisällä.

Aloit­te­li­joil­le toi­mii perin­tei­nen voi­ma­har­joit­te­lu – koke­neil­le ei

Perin­tei­nen voi­ma­har­joit­te­lu paran­taa volun­taa­ris­ta akti­voin­ti­ky­kyä, min­kä kehit­tä­mi­nen paran­taa voi­man­tuot­to­no­peut­ta ja mak­si­mi­voi­maa. Yleen­sä aloit­te­li­joil­la ei ole kykyä akti­voi­da kaik­kia lihas­so­lu­ja, joi­ta he kont­rol­loi­vat. Voi­ma­har­joit­te­lun jäl­keen tämä kyky para­nee ja lisää moto­ri­sia yksi­köi­tä tulee saa­ta­vil­le. Tämä paran­taa mak­si­mi­voi­maa ja voi­man­tuot­to­ky­kyä. Mut­ta koke­neil­la har­joit­te­li­joil­la tätä adap­taa­tioi­ta ei enää saa­vu­te­ta ja volun­taa­ri­sen akti­voin­ti­ky­vyn paran­ta­mi­nen on erit­täin han­ka­laa. (Huc­teau et al., 2020.)

Voi­ma­har­joit­te­lu paran­taa rei­sien eksent­ris­tä voi­maa ja lon­kan ojen­ta­jien voi­maa myös kor­keil­la nopeuk­sil­la, vaik­ka­kin ei yhtä pal­jon kuin pelk­kä nopea voi­man­tuot­to­har­joit­te­lu. Voi­ma­har­joit­te­lun teho pie­ne­nee, kun urhei­li­ja saa­vut­taa riit­tä­vän voi­ma­ta­son tai mak­si­maa­li­sen kon­sent­ri­sen supis­tu­mis­no­peu­den. Lisäk­si voi­ma­har­joit­te­lu saat­taa kään­tyä itse­ään vas­taan, jos kehon­pai­non on lisään­nyt­tä­vä, jot­ta lihas­mas­sa lisään­tyi­si. Näi­tä ongel­mia ei koh­da­ta heti aluk­si ja sen takia voi­ma­har­joit­te­lu on aluk­si teho­kas­ta. Koke­neem­pien urhei­li­joi­den tulee miet­tiä mui­ta vaihtoehtoja.

Min­kä­lais­ta voi­ma­har­joit­te­lun pitäi­si sit­ten olla pikajuoksijalle?

Pika­juok­si­jan kan­nat­taa kes­kit­tyä elas­ti­sen voi­man kehit­tä­mi­seen. Elas­ti­nen voi­ma tar­koit­taa kudos­ten kykyä imeä, varas­toi­da ja vapaut­taa ener­gi­aa. Mitä enem­män ener­gi­aa nämä kudok­set vapaut­ta­vat, sitä nopeam­min ja tehok­kaam­min juok­si­ja kii­tää radal­la. Elas­ti­nen ener­gia tuo­te­taan jän­teel­lä. Esi­mer­kik­si poh­je­li­has ei veny juok­sus­sa eksent­ri­ses­sä vai­hees­sa, vaan lihas pysyy saman pitui­se­na (tekee iso­met­ris­tä työ­tä) ja jän­ne venyy, mut­ta koko lihas­jän­ne­komplek­si kas­vaa. Jän­teet ovat kuin jousia ja veny­tet­täes­sä ne kim­mah­ta­vat nopeas­ti takai­sin lepo­pi­tuu­teen­sa. Jän­teet tuot­ta­vat siis pal­jon yli­mää­räis­tä nope­aa voi­maa. Jän­teet eivät tar­vit­se hap­pea ja eivät­kä väsy. Jän­tei­den ja elas­tis­ten omi­nai­suuk­sien kehit­tä­mi­nen oli­si tär­keä olla muka­na kai­kes­sa tekemisessä.

Voi­ma­har­joit­te­lus­sa lihak­sia tuli­si kehit­tää pika­juok­sun tar­pei­den mukaan. Tuki­vai­hees­sa, eli toi­sen jalan olles­sa maas­sa, nilk­ka vas­taa suu­rim­mal­ta osal­ta voi­man­tuo­tos­ta. Nil­kan ja nilk­kaa lii­kut­ta­vien lihas­ten voi­ma­har­joit­te­lu on erit­täin tär­ke­ää. Jalan hei­lah­dus­vai­hees­sa eni­ten voi­maa tuot­taa taas lan­tion alu­een lihak­set. Eni­ten voi­maa ime­vät pol­ven alu­een lihak­set: taka- ja etu­rei­si. Juok­su­no­peu­den lisään­tyes­sä kyky tuot­taa ja ottaa vas­taan voi­mia eri­tyi­ses­ti lan­tion alu­eel­la tulee progres­sii­vi­ses­ti tär­keäm­mäk­si (Kuva 4).

Paka­roi­hin, lähen­tä­jiin, taka­rei­siin ja lon­kan kou­kis­ta­jiin tar­vi­taan nope­aa voi­man­tuot­toa eri­tyi­ses­ti hei­lah­dus­vai­hees­sa! Etu­rei­det ja taka­rei­det taas ime­vät eni­ten voi­maa ja toi­mi­vat tär­kei­nä teki­jöi­nä tuki­vai­hees­sa. Tär­keim­mät lihak­set tuki­vai­hees­sa ovat soleus ja gastroc­ne­mius sekä eri­tyi­ses­ti lii­ke­suun­ta­na nil­kan plan­taa­riflek­sio. (Schac­he et al., 2011.) Huo­mio­na kui­ten­kin, ettei voi­man­tuot­to tuki­vai­hees­sa ole yhtey­des­sä juok­su­no­peu­den kans­sa. Se toi­mii juok­su­no­peu­den mah­dol­lis­ta­va­na tekijänä.

Joten tar­vi­taan nope­aa voi­man­tuot­toa lon­kan ojen­ta­jiin ja kou­kis­ta­jiin sekä eksent­ris­tä voi­maa pol­vien ojen­ta­jien ja kou­kis­ta­jien, jot­ta ne voi­vat imeä voimia!

  • Hei­lau­tus­vai­hees­sa nopea supis­tu­mis­no­peus, kor­kea nopeus --> nopean voi­man­tuo­ton har­joit­te­lua lon­kan alueelle!
  • Kun taas etu­rei­det hei­lau­tus­vai­hees­sa ime­vät voi­maa nii­den lihas­pi­tuus kas­vaa! Täl­löin nopeu­del­la ei ole väliä vaan voi­man­tuot­to­ky­vyl­lä. (Askling et al., 2003.)

Voi­ma­har­joit­te­lua tuli­si teh­dä siis lon­kan ojen­ta­jil­le ja kou­kis­ta­jil­le kor­keil­la nopeuk­sil­la. Rei­den ojen­ta­jil­le ja kou­kis­ta­jil­le taas kor­keam­paa voi­man­tuot­toa, kun nii­den pituus kas­vaa. Tämä joh­tuu sii­tä, että nii­den tär­kein teh­tä­vä juok­sun aika­na on ottaa vas­taan iso­ja voi­mia. Käy­tän­nös­sä tämä voi­si tar­koit­taa sitä, että samas­sa har­joi­tuk­ses­sa teh­täi­siin ensik­si kor­kean nopeu­den liik­kei­tä lon­kan alu­eel­la ja tämän jäl­keen eksent­ris­tä har­joit­te­lua pol­ven alu­een lihaksille.

Kor­kean nopeu­den voi­ma­har­joit­te­lu paran­taa kor­kean nopeu­den voi­maa pal­jon enem­män kuin ras­kas perin­tei­nen voi­ma­har­joit­te­lu ja eksent­ri­nen har­joit­te­lu paran­taa eksent­ris­tä voi­maa pal­jon enem­män kuin perin­tei­nen voi­ma­har­joit­te­lu. Tämän takia spe­si­fim­män har­joit­te­lun raken­ta­mi­nen on pal­jon tehok­kaam­paa kuin perin­tei­sen voi­ma­har­joit­te­lu teke­mi­nen. Kor­kean voi­man ja kor­kean nopeu­den perio­di­soin­ti peräk­käin ei ole jär­ke­vää pika­juok­sus­sa, kos­ka eri lihak­set tar­vit­se­vat eri­lais­ta voi­man­tuot­to­ky­kyä. Nii­tä voi ja kan­nat­taa kehit­tää kokoa­jan! Lisäk­si hyö­ty­nä täs­sä on se, ettei tar­vit­se pelä­tä jon­kun omi­nai­suu­den las­ke­van, kuten perin­tei­ses­sä perio­di­saa­tios­sa. Esi­mer­kik­si perin­tei­ses­sä perio­di­saa­tios­sa rei­sien voi­man­tuot­to tip­puu, kun siir­ry­tään har­joit­ta­maan nope­aa voimantuottoa.

Kuva 4: Nilk­ka tuot­taa voi­maa kon­tak­ti­vai­hees­sa kun taas hei­lah­dus­vai­hees­sa voi­man­tuo­tos­ta vas­taa lan­tio. Voi­mia imee pol­ven alu­een lihak­set kon­tak­ti­vai­hees­sa, mut­ta myös lan­tion alu­een lihak­set vauh­din kasvaessa.

Läh­teet:

Askling, C., Karls­son, J., & Thors­tens­son, A. (2003, August). Ham­string inju­ry occur­rence in eli­te soccer players after pre­sea­son strength trai­ning with eccent­ric over­load. Ret­rie­ved from https://www.ncbi.nlm.nih.gov/pubmed/12859607

Baker, D., and Nance, S. The Rela­tion Between Run­ning Speed and Mea­su­res of Strength and Power in Pro­fes­sio­nal Rug­by Lea­gue Players. J. Strength Cond. Res.13(3): 230-235, 1999.

Beh­rens, M., Mau-Moel­ler, A., Muel­ler, K., Hei­se, S., Gube, M., Beus­ter, N., … Bruhn, S. (2015, Februa­ry 4). Ply­omet­ric trai­ning impro­ves volun­ta­ry acti­va­tion and strength during iso­met­ric, concent­ric and eccent­ric cont­rac­tions. Ret­rie­ved from https://www.sciencedirect.com/science/article/pii/S1440244015000377

Bosch, F., and Klomp, R. Run­ning: Bio­mec­ha­nics and Exerci­se Phy­sio­lo­gy Applied in Prac­tice. Phi­la­delp­hia, PA: Else­vier, 2005.

Čoh, M., & Zvan, M., Velič­kovs­ka, L., Ziv­ko­vic, V. & Gon­ta­rev, S. (2016). BIO­DY­NA­MICAL FAC­TORS OF RUN­NING SPEED DEVE­LOP­MENT. 5. 17-22.

Colyer, S. L., Sto­kes, K. A., Bilzon, J. L. J., Holdc­roft, D., & Salo, A. I. T. (2018, April 1). Trai­ning-Rela­ted Chan­ges in Force-Power Pro­fi­les: Implica­tions for the Ske­le­ton Start. Ret­rie­ved from https://www.ncbi.nlm.nih.gov/pubmed/28872389

Cro­nin, J., Ogden, T., Law­ton, T., and Brug­hel­li, M. Does Inc­rea­sing Maxi­mum Strength Impro­ve Sprint Run­ning Per­for­mance. 29(3): 86-95, 2007.

Cun­ha, L., Alves, F., & Velo­so, A. (2002). The touch-down and takeoff angles in dif­fe­rent pha­ses of 100 m sprint run­ning. Pre­sen­ta­tion at the Inter­na­tio­nal Sym­po­sium on Bio­mec­ha­nics in Sport, Cace­res-Ext­re­ma­du­ra, Spain.

Ers­ki­ne, R. M., Jones, D. A., Maf­ful­li, N., Wil­liams, A. G., Stewart, C. E., & Degens, H. (2011, Februa­ry). What causes in vivo muscle speci­fic ten­sion to inc­rea­se fol­lowing resis­tance trai­ning? Ret­rie­ved from https://www.ncbi.nlm.nih.gov/pubmed/20889606

Huc­teau, E., Jubeau, M., Cor­nu, C. et al. Is the­re an inter­muscu­lar rela­tions­hip in volun­ta­ry acti­va­tion capaci­ties and cont­rac­ti­le kine­tics?. Eur J Appl Phy­siol 120, 513–526 (2020). https://doi.org/10.1007/s00421-019-04299-z

Januse­vicius, D., Sniec­kus, A., Skur­vy­das, A., Silins­kas, V., Trin­ku­nas, E., Cade­fau, J. A., & Kaman­du­lis, S. (2017, June 1). Effects of High Veloci­ty Elas­tic Band ver­sus Hea­vy Resis­tance Trai­ning on Ham­string Strength, Acti­va­tion, and Sprint Run­ning Per­for­mance. Ret­rie­ved from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5465986/

Kane­hi­sa H, Funa­to K, Kuno S, et al. Growth trend of the quadriceps femo­ris muscle in junior Olym­pic weight lif­ters: an 18-month fol­low-up sur­vey. Eur J Appl Phy­siol 2003; 89: 238-42.

Kuma­gai K, Abe T, Brec­hue WFet al. Sprint per­for­mance is rela­ted to muscle fascicle length in male 100-m sprin­ters. J Appl Phy­siol 2000; 88: 811-6.

Morin, J.-B., Pet­ra­kos, G., Jimé­nez-Reyes, P., Brown, S. R., Samozi­no, P., & Cross, M. R. (2017, July). Very-Hea­vy Sled Trai­ning for Impro­ving Horizon­tal-Force Out­put in Soccer Players. Ret­rie­ved from https://www.ncbi.nlm.nih.gov/pubmed/27834560

Naga­ha­ra R, Zus­hi K. Deve­lop­ment of maxi­mal speed sprin­ting per­for­mance with chan­ges in ver­tical, leg and joint stiff­ness. J Sports Med Phys Fit­ness. 2017 Dec;57(12):1572-1578. doi: 10.23736/S0022-4707.16.06622-6. Epub 2016 Jul 13. PMID: 27406013.

Naga­no, A., & Komu­ra, T. (2003, Novem­ber). Lon­ger moment arm results in smal­ler joint moment deve­lop­ment, power and work out­puts in fast motions. Ret­rie­ved from https://www.ncbi.nlm.nih.gov/pubmed/14522209

Poliquin, C., Pat­ter­son, Paul. Ter­mi­no­lo­gy: Clas­si­fica­tion of Strength Qua­li­ties. Strength Con­di­tio­ning J. 11(6):48-52, 1989.

Reich, T. E., Linds­tedt, S. L., LaS­tayo, P. C., & Pie­rot­ti, D. J. (2000, June). Is the spring qua­li­ty of muscle plas­tic? Ret­rie­ved from https://www.ncbi.nlm.nih.gov/pubmed/10848536

Ross, S. A., & Wake­ling, J. M. (2016, June). Muscle shor­te­ning veloci­ty depends on tis­sue iner­tia and level of acti­va­tion during sub­maxi­mal cont­rac­tions. Ret­rie­ved from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4938035/

Schac­he, A. G., Blanch, P. D., Dorn, T. W., Brown, N. A. T., Rose­mond, D., & Pan­dy, M. G. (2011, July). Effect of run­ning speed on lower limb joint kine­tics. Ret­rie­ved from https://www.ncbi.nlm.nih.gov/pubmed/21131859

Siff, MC. Supert­rai­ning. Den­ver, CO: Supert­rai­ning Ins­ti­tu­te, 2003.

Widrick, J. J., Stelzer, J. E., Shoe­pe, T. C., & Gar­ner, D. P. (2002, August). Func­tio­nal pro­per­ties of human muscle fibers after short-term resis­tance exerci­se trai­ning. Ret­rie­ved from https://www.ncbi.nlm.nih.gov/pubmed/12121854

Wil­son, G., New­ton, R., Murp­hy, A. & Humph­ries, B. (1993) The opti­mal trai­ning load for the deve­lop­ment of dyna­mic ath­le­tic per­for­mance. Med Sci Sports Exerc. Nov;25(11):1279-86. PMID: 8289617.

Yleistaitoteoria ja taitojen harjoittelu urheilussa

Yleistaitoteoria ja taitojen harjoittelu urheilussa

Yleis­tai­to­ja ei ole olemassa

Suu­rin osa val­men­nus­kir­jal­li­suu­des­ta viit­taa ylei­siin moto­ri­siin omi­nai­suuk­siin. Näil­lä tar­koi­te­taan yleen­sä voi­maa, nopeut­ta, kes­tä­vyyt­tä, liik­ku­vuut­ta ja tai­ta­vuut­ta. Näi­den väi­te­tään ole­van ylä­kä­sit­tei­tä, joi­den siir­to­vai­ku­tus on erit­täin hyvä käsit­teen alla. Esi­mer­kik­si pel­käs­tään nopeus voi­daan jakaa lukui­siin eri ala­la­jei­hin, jois­sa toi­sen kehit­tä­mi­nen ei kehi­tä tois­ta. Yleis­tai­dot eivät ole erik­seen har­joi­tet­ta­vis­sa, vaik­ka niin väi­te­tään. Oli­si­ko yleis­ten moto­ris­ten omi­nai­suuk­sien sijaan tar­kas­te­lus­sa siir­ryt­tä­vä tar­kem­min yksit­täi­siin moto­ri­siin taitoihin?

KUVA 1: Yleis­tai­toa­jat­te­lus­ta tuli­si siir­tyä koh­ti holis­ti­sem­paa ajat­te­lua (Van Hoo­ren & Croix, 2020)

Lähek­käin ole­vat tai­dot eivät kor­re­loi kes­ke­nään kovin­kaan vah­vas­ti. Näyt­täi­si sil­tä, että on monia eri­lai­sia moto­ri­sia mal­le­ja ja ei ole yhtä yleis­tai­to­ja, jon­ka alle nämä voi­si­vat raken­tua. Esi­mer­kik­si Drowatz­ky & Zucca­to (1967) tes­ta­si­vat kuut­ta eri tasa­pai­no­tes­tiä ja miten koe­hen­ki­löt pär­jää­vät näis­sä tes­teis­sä. Jos tasa­pai­no yleis­tai­to oli­si yksi mal­li niin, sil­loin yhdes­sä tes­tis­sä pär­jää­mi­nen oli­si yhtey­des­sä pär­jää­mi­seen hyvin kai­kis­sa tes­teis­sä. Kui­ten­kin tulok­sis­sa kor­kein kor­re­laa­tio oli vaa­ti­ma­ton r=0.31 tar­koit­taen vain noin 9,6 % yhteyt­tä tes­tien välil­lä! Val­men­ta­mi­ses­sa kes­kit­ty­mi­sen tuli­si­kin olla enem­män yksit­täi­sis­sä moto­ri­sis­sa tai­dois­sa kuin yleis­tai­dois­sa. Miten näi­tä tuli­si sit­ten harjoittaa?

Mik­si tai­toa har­joi­tel­laan tie­toi­sel­la tasolla?

Yleen­sä har­joit­te­lus­sa val­men­ta­ja antaa kog­ni­tii­vi­sel­la tasol­la ohjei­ta urheilijalle/urheilijoille. Urhei­li­ja yrit­tää kuun­nel­la ja sisäis­tää asian ja sen jäl­keen tie­toi­ses­ti kor­ja­ta vir­heel­li­sen suo­ri­tuk­sen. Tai­to­jen har­joit­te­le­mi­nen tie­toi­sel­la tasol­la on aivan lii­an hidas­ta. Pelis­sä ja suo­ri­tuk­ses­sa reflek­sit kor­jaa­vat eni­ten lii­ket­tä, joten har­joit­te­lun­kin tuli­si olla samanlaista!

Nopeat liik­keet suun­ni­tel­laan etu­kä­teen ja sit­ten ne vain toteu­te­taan. Kehol­la ei ole aikaa pro­ses­soi­da kaik­kea palau­tet­ta vir­heis­tä ja kor­ja­ta nii­tä suo­ri­tuk­sen aika­na, vaan liik­keet toteu­te­taan ennal­ta raken­ne­tun mal­lin mukaan. Liik­keen aika­na on lii­kaa liik­ku­via lihak­sia ja nive­liä, joi­ta pitää kont­rol­loi­da. Rajoit­tu­nut tie­toi­nen tasom­me ei mil­lään pys­ty kont­rol­loi­maan näi­tä kaik­kia liik­keen aika­na. Esi­mer­kik­si uima­hyp­pää­jä ei pys­ty suo­ri­tuk­sen aika­na kont­rol­loi­maan suu­res­ti lii­ket­tään, vaan palau­te liik­kees­tä tulee vas­ta liik­keen jäl­keen. Esi­mer­kik­si kei­hään­heit­tä­jä voi poh­tia hei­ton jäl­keen mil­täs se nyt tun­tui ja mitäs sii­nä oikein tapah­tui. Har­joit­te­lul­la voi­daan raken­taa uusia moto­ri­sia ohjel­mia tai paran­taa van­ho­ja. Moto­ri­nen ohjel­ma sisäl­tää aluk­si mitä lihak­sia käy­te­tään, mis­sä jär­jes­tyk­ses­sä ja kuin­ka pitkään.

Moto­ri­set etu­kä­teen suun­ni­tel­ta­vat ohjel­mat pitä­vät sisäl­lään aina­kin seu­raa­vat asiat:

  • Käs­kyt lihak­sil­le, mit­kä lihak­set supis­tu­vat ja kuin­ka voi­mak­kaas­ti sekä kuin­ka kau­an supistuvat
  • Mit­kä lihak­set osal­lis­tu­vat, lihas­ten supis­tu­mis­jär­jes­tys, lihas­ten voi­ma, supis­tus­ten ajoi­tus ja kesto
  • Nivel­ten vapausas­teen kont­rol­loi­mi­nen yhdek­si yksiköksi
  • Kehon ryh­dil­li­set asiat
  • Reflek­sien modu­loi­mi­nen, jot­ta tavoi­te saa­vu­te­taan (kat­so videot)

Har­joit­te­lul­la saa­te­taan saa­vut­taa tila, mis­sä joi­ta­kin reflek­se­jä­kin pys­ty­tään hal­lit­se­maan, jot­ta suo­ri­tus oli­si mah­dol­li­sim­man hyvä. Aloit­te­le­val­la har­joit­te­li­jal­la muo­dos­tuu pal­jon yksit­täi­siä eril­li­siä moto­ri­sia ohjel­mia, jot­ka har­joit­te­lun myö­tä sulau­tu­vat yhdek­si koko­nai­sek­si moto­ri­sek­si ohjel­mak­si. Sik­si hui­puil­la tai­to näyt­tää niin hel­pol­ta ja suju­val­ta. Kun aloit­te­le­val­la se voi olla vähän kul­mi­kas ja tök­säh­te­le­vä. Tämä joh­tuu sii­tä, että aina pitää akti­voi­da uusi moto­ri­nen ohjel­ma ja se on kömpelöä.

Täs­sä näkyy hyvin, miten tavoi­te on osua pal­loon ja se ei onnis­tu, jos on pal­jon liik­ku­via osia. Sen takia moto­ri­nen ohjel­ma sul­kee esi­mer­kik­si selän kier­ron ja lonk­ka­ni­ve­len liik­keen videos­sa, jot­ta tavoi­te onnis­tuu. Onnis­tuak­seen tavoit­tees­sa, eli pal­loon osu­mi­ses­ta, tulee kehon vähen­tää nivel­ten vapaa­ta liik­ku­mis­ta. Tätä voi­daan kut­sua liik­keen jäädyttämiseksi.
Ei se aina enti­sil­tä huip­pu-urhei­li­joi­ta­kaan suju. Tämä ker­too eri moto­ri­sen lii­ke­mal­lin ole­van käy­tös­sä gol­fis­sa kuin kori­pal­los­sa, eivät­kä nämä mene yhden ”yleis­tai­don” alle.

Tai­don har­joit­te­lu aut­taa moto­ris­ta ohjel­maa kehit­ty­mään ja lisää vapausas­tet­ta sekä liik­kee­seen tulee enem­män liik­ku­via osia, jot­ka lopul­ta näky­vät tai­dok­kaam­pa­na lyön­ti­nä. Tavoi­te pysyy koko ajan sama­na. Osua pal­loon ja saa­da se johon­kin halut­tuun koh­taan tip­pu­maan. Berns­tein (1967) kut­suu tätä ensim­mäis­tä oppi­mi­sen vai­het­ta vapausas­teen ongel­mak­si. Kaik­ki kehon eri lihak­set ja nive­let ovat vapai­ta liik­ku­man use­aan eri suun­taan, Oppi­ja ei vie­lä osaa kont­rol­loi­da kaik­kea tätä vapaut­ta ja siten keho vähen­tää ei-tär­keim­mät kehon osat pois aloit­te­le­val­ta tai­don oppi­jal­ta, jot­ta tavoit­tees­sa onnistutaan.

Myö­hem­min oppi­ja voi ruve­ta otta­maan mukaan enem­män vapausas­tet­ta, jot­ka oli­vat aluk­si “jää­ty­nei­tä”.

Tämä mah­dol­lis­taa nopeam­man ja suu­rem­man voi­man­tuo­ton var­sin­kin nopeis­sa liik­keis­sä (kuva 2). Kaik­kein koke­neim­mat urhei­li­jat oppi­vat Berns­tei­nin mukaan hyö­dyn­tä­mään kehon pas­sii­vi­sia ele­ment­te­jä, kuten momen­tu­mia, elas­ti­suut­ta, pai­no­voi­maa ym. Tämä joh­taa tehok­kaam­paan liik­keen suo­rit­ta­mi­seen ja pie­nem­pään ener­gian tuh­lauk­seen. Esi­mer­kik­si lämää­mi­nen jää­kie­kos­sa vaa­tii mai­lan elas­ti­suu­den hyö­dyn­tä­mis­tä ja esi­mer­kik­si aloit­te­le­vat jää­kiek­ko­pe­laa­jat eivät opi ensim­mäi­sek­si lämäämistä.

KUVA 2: Hyvä esi­merk­ki aloit­te­li­jan ja koke­neen tai­don erois­ta. Vapausas­teen ero näkyy ylä­var­ta­lon kier­ros­sa. Oikeal­la puo­lel­la koh­ta pää­se lan­tio työn­ty­mään eteen ja pääs­tään hyö­dyn­tä­mään veny­tys­reflek­sin tuo­maa lisä­voi­maa ja ylä­var­ta­lon kier­to­voi­o­maa, kun taas vasem­mal­la voi­daan voi­maa tuot­taa enää työn­tö­kä­del­lä. Ylä­var­ta­loon ei ole muo­dos­tu­nut kier­toa, kos­ka se vaa­ti­si lii­kaa vapausas­tet­ta ylä­se­län nika­mil­ta, joka han­ka­loit­tai­si tavoi­tet­ta, eli kuu­lan työn­tä­mis­tä pois ringistä.

Ryt­mi on moto­ris­ten ohjel­mien pohja

Nopeat liik­keet ovat jokai­nen eri­lai­sia, vaik­ka moto­ri­nen ohjel­ma taus­tal­la oli­si sama. Schöll­horn seu­ra­si yhden koko vuo­den ajan tois­tai­si­ko kak­si huip­pu­kie­kon­heit­tä­jä heit­to­liik­keen­sä täs­mäl­leen saman­lai­se­na (Savels­bergh et al, 2010). Vuo­den aika­na urhei­li­jat eivät tois­ta­neet ker­taa­kaan samaa heit­toa kah­des­ti. Lii­ke ei ole kos­kaan täy­del­li­ses­ti saman­lai­nen, vaik­ka usein tavoi­tel­laan­kin sitä yhtä tiet­tyä täy­del­lis­tä tek­niik­ka. Moto­ri­nen ohjel­ma sovel­le­taan aina eri ympä­ris­töön ja tilan­tei­siin. Esi­mer­kik­si sul­ka­pal­lo­lyön­ti ei iki­nä tule samaan koh­taan tai lyö­jän asen­to ei ole iki­nä täs­mäl­leen sama. Moto­ris­ta ohjel­maa jou­du­taan aina hiu­kan varioi­maan. Tai­to varioi­daan ympä­ris­tön tar­pei­siin. Moto­ri­nen ohjel­ma ilmais­taan eri taval­la, mut­ta sen perus­luon­ne ei muu­tu. Ylei­nen moto­ri­nen ohjel­ma on pit­kä­ai­kai­ses­sa muis­tis­sa. Siel­tä se kai­ve­taan esiin ja sitä pys­ty­tään varioi­maan eri tilanteissa.

Kui­ten­kin ryt­mi tai rela­tii­vi­nen ajoi­tus toi­mii poh­ja­na moto­ri­sil­le ohjel­mil­le ja on vakio, vaik­ka muu­ten ympä­ris­tö vaih­tui­si pal­jon­kin. Liik­keen nopeus­kin voi muut­tua samas­sa moto­ri­ses­sa ohjel­mas­sa. Nopeus vai­kut­taa muun muas­sa voi­miin, voi­man­tuo­ton nopeu­teen, raa­jo­jen nopeu­teen ja kul­jet­tuun mat­kaan ym., mut­ta ryt­mi on sama, vaik­ka nopeus kas­vai­si­kin. Ryt­mi toi­mii moto­ri­sen ohjel­man poh­ja­na ja kaik­kea muu­ta on help­po varioi­da sen ympä­ril­le. Tar­kem­min hitaam­min teh­ty lii­ke hidas­te­taan koko­nai­suu­te­na hitaam­mak­si yksi­köis­sä, jot­ta liik­keen suh­teel­li­nen ajoi­tus pysyy sama­na. Esi­mer­kik­si lyhyem­pi ja pidem­pi heit­to. Joten koko­nai­nen yli olan tapah­tu­va heit­tä­mi­nen voi­daan säi­löä pit­kä­ai­kais­muis­tiin yhte­nä koko­nai­suu­te­na. (Sch­midt & Lee, 2011.)

KUVA 3: Lois­ta­va kuva demon­stroi­maan heit­to­tai­don varioin­tia eri väli­neel­lä. Nil­kan, pol­ven, lan­tion, har­tian ajoi­tus on täs­sä tär­keä kuin myös kes­ki­var­ta­lon kään­ty­mi­sen ajoitus.

Mitä kaik­kea voi sit­ten vaih­del­la moto­ri­sen ohjel­man sisällä?

- Liik­keen kokonaisaika

- Liik­keen ampli­tu­di (osaat kir­joit­taa pie­neen pape­riin ja val­ta­vaan luo­kan piirustustauluun)

- Lihak­set. Niin usko­mat­to­mal­ta kuin se kuu­los­taa jois­sain mää­rin lihak­sien vaih­ta­mi­nen onnis­tuu. Rai­bert (1977) tut­ki asi­aa kir­joit­ta­mal­la saman lauseen ensik­si käsil­lä, sit­ten ran­ne immo­bi­li­soi­tu­na, vasem­mal­la kädel­lä, ham­pail­la ja vii­mei­sek­si var­pail­la. Kaik­ki kir­joi­tuk­set pys­tyt­tiin sel­väs­ti tun­nis­ta­maan saman hen­ki­lön kir­joit­ta­mak­si, vaik­ka eri lihak­set työs­ken­te­li­vät! Sama moto­ri­nen ohjel­ma oli käy­tös­sä, vaik­ka eri lihak­set työskentelivät.

Joten mah­dol­lis­tat­ko sinä val­men­nuk­ses­sa­si moto­ri­sen ohjel­man opti­maa­li­sen kehit­ty­mi­sen? Ete­net­kö ope­tuk­ses­sa jär­ke­väs­ti liik­keen tai­to­ta­so huo­mioi­den? Lisäk­si huo­mioit­ko liik­keen ryt­min nopei­den liik­kei­den yti­me­nä ja varioit tai­toa loput­to­mas­ti, mut­ta pitäen liik­keen yti­men samana?

Läh­teet:

Berns­tein, N.A. (1967) The Co-ordi­na­tion and regu­la­tion of move­ments. Oxford: Per­ga­mon Press.

Drowatz­ky, J. & Zucca­to, F. (1967) Inter­re­la­tions­hips between Selec­ted Mea­su­res of Sta­tic and Dyna­mic Balance, Research Quar­ter­ly. Ame­rican Associa­tion for Health, Phy­sical Educa­tion and Rec­rea­tion, 38:3, 509-510, DOI10.1080/10671188.1967.10613424

Hoo­ren, B. & Croix, M. (2020). Sen­si­ti­ve Periods to Train Gene­ral Motor Abi­li­ties in Children and Ado­lescents: Do They Exist? A Cri­tical Apprai­sal. Strength and Con­di­tio­ning Jour­nal. 1. 10.1519/SSC.0000000000000545.

Kee­le, S. W., & Pos­ner, M. I. (1968). Proces­sing visual feed­back in rapid move­ments. Jour­nal of Expe­ri­men­tal Psyc­ho­lo­gy, 77, 155-158. doi:10.1037/h0025754

Ker­nod­le, M. & Carl­ton, L. (1992). Infor­ma­tion Feed­back and the Lear­ning of Mul­tiple-Degree-of-Free­dom Acti­vi­ties. Jour­nal of motor beha­vior. 24. 187-96. 10.1080/00222895.1992.9941614.

Lee, T. D., & Magill, R. A. (1983). The locus of con­tex­tual inter­fe­rence in motor-skill acqui­si­tion. Jour­nal of Expe­ri­men­tal Psyc­ho­lo­gy: Lear­ning, Memo­ry, and Cog­ni­tion, 9(4), 730-746. http://dx.doi.org/10.1037/0278-7393.9.4.730

McC­rac­ken, H. & Stel­mach, G. (1977). A Test of the Sche­ma Theo­ry of Disc­re­te Motor Lear­ning. Jour­nal of Motor Beha­vior. 9. 193-201. 10.1080/00222895.1977.10735109.

Rai­bert, M.H. (1977) Motor cont­rol and lear­ning by the sta­te space model. Tech. Rep. No. AI-TR-439. Cam­brid­ge: MIT, Arti­ficial Intel­li­gence Laboratory.

Roths­tein A. L., Arnold R. (1976). Brid­ging the gap: applica­tion of research on video­ta­pe feed­back and bow­ling. Mot. Skills Theo­ry Pract. 1, 35–64

Ryan, R. M. & Deci, E. L. (2000). Self-deter­mi­na­tion theo­ry and the faci­li­ta­tion of int­rin­sic moti­va­tion, social deve­lop­ment, and well-being. Ame­rican Psyc­ho­lo­gist, 55(1), 68-78.

Shea, J. & Zim­ny, S. (1983). Con­text Effects in Memo­ry and Lear­ning Move­ment Infor­ma­tion. Res Q Exerc Sport. 1991 Jun;62(2):187-95. DOI: 10.1016/S0166-4115(08)61998-6.

Sch­midt, R.A., & Lee, T.D (2011) Motor cont­rol and lear­ning: A beha­vio­ral emp­ha­sis (5th edi­tion). Cham­paign, IL: Human Kinetics.

Sch­midt, R.A., & Young, D.E. (1987) Tran­se­fer of move­ment cont­rol in motor lear­ning. In S.M: Cor­mier & J.D. Hag­man (edi­tors), Trans­fer of lear­ning (p. 45-80). Orlan­do, FL: Aca­de­mic press.

Sch­midt, R. A. (1975). A sche­ma theo­ry of disc­re­te motor skill lear­ning. Psyc­ho­lo­gical Review, 82(4), 225-260. http://dx.doi.org/10.1037/h0076770

Swin­nen, S., Sch­midt, R., Nic­hol­son, D. & C. Sha­pi­ro, D. (1990). Infor­ma­tion Feed­back for Skill Acqui­si­tion: Ins­tan­ta­neous Know­led­ge of Results Degra­des Lear­ning. Jour­nal of Expe­ri­men­tal Psyc­ho­lo­gy: Lear­ning, Memo­ry, and Cog­ni­tion. 16. 706-716. 10.1037//0278-7393.16.4.706.

Unger­lei­der, L.G. & Mish­kin, M. (1982) Two cor­tical visual sys­tems. In D.K.Ingle, M.A. Goo­da­le, & R.J.W. Mans­field (edi­tors), Ana­ly­sis of visual beha­viour, pp. 549 - 587. Cam­brid­ge, MA: MIT Press.

Wins­tein, C. J., & Sch­midt, R. A. (1990). Reduced frequency of know­led­ge of results enhances motor skill lear­ning. Jour­nal of Expe­ri­men­tal Psyc­ho­lo­gy: Lear­ning, Memo­ry, and Cog­ni­tion, 16(4), 677-691.