Heikosti vastaavat yksilöt voimaharjoittelussa - miten saada hardgaineri kehittymään?

Heikosti vastaavat yksilöt voimaharjoittelussa - miten saada hardgaineri kehittymään?

Olet­ko teh­nyt har­joi­tus­oh­jel­man ja huo­man­nut ohjel­man jäl­keen, ettet kehit­ty­nyt­kään tai urhei­li­ja­si ei saa­vut­ta­nut­kaan halut­tua kehi­tys­tä? Kaik­ki yksi­löt kehit­ty­vät eri tah­tiin ja tie­däm­me, että yksi­löi­den välil­lä on pal­jon ero­ja kehit­ty­mis­tah­dis­sa. Jot­kut yksi­löt eivät vas­taa tie­tyn­lai­seen har­joit­te­luun ollen­kaan, kun toi­set taas kehit­ty­vät vim­ma­tus­ti. Lihas­mas­sa­har­joit­te­lun yhtey­des­sä käy­te­tään kan­san­kie­li­ses­ti ter­mis­töä hard­gai­ne­ri, kun kehi­tys­tä ei tule. Mitä täm­möi­sis­sä tapauk­sis­sa kan­nat­taa teh­dä, jot­ta kehi­tys­tä saa­daan jat­kos­sa aikaan vai onko hard­gai­ner tuo­mit­tu lop­pue­lä­mäk­si ole­maan kehittymättä?

Mitkä kaikki vaikuttavat kehittymiseen voimaharjoittelussa?

Vaik­ka voi­ma­har­joit­te­lu onkin erin­omai­nen tapa kehit­tää lihas­voi­maa ja -kes­tä­vyyt­tä, se ei kui­ten­kaan ole aina yhtä teho­kas kai­kil­le ihmi­sil­le. Kehit­ty­mi­seen vai­kut­ta­vat monet eri teki­jät, kuten ikä, suku­puo­li, peri­mä, elä­män­ta­vat, har­joi­tus­taus­ta ja mah­dol­li­set sai­rau­det tai vammat.

Tämän vuok­si onkin tär­ke­ää ymmär­tää ja suun­ni­tel­la voi­ma­har­joit­te­lua yksi­löl­lis­ten tar­pei­den mukaan. Yksi­löl­li­syy­den huo­mioi­mi­nen voi­ma­har­joit­te­lus­sa aut­taa saa­vut­ta­maan parem­pia tulok­sia ja vält­tä­mään mah­dol­li­sia vam­mo­ja tai ylirasitusta.

Erit­täin tär­keä teki­jä kehit­ty­mi­ses­sä on har­joi­tus­taus­ta. Esi­mer­kik­si vas­ta-alka­ja kehit­tyy huo­mat­ta­via mää­riä alus­sa lihas­mas­san ja voi­man osal­ta, kun taas koke­neem­mal­la har­joit­te­li­jal­la pie­nen­kin kehi­tyk­sen saa­vut­ta­mi­nen on haas­ta­vam­paa (Rhea et al., 2003).

Lihas­kas­vus­ta ja kai­kes­ta har­joit­te­lus­ta puhut­taes­sa ei voi olla puhu­mat­ta ravit­se­muk­ses­ta ja pro­teii­nin mer­ki­tyk­ses­tä. Yksi­löt, jot­ka saa­vat riit­tä­väs­ti ener­gi­aa ja pro­teii­nia tuke­maan hei­dän har­joit­te­lu­aan, kehit­ty­vät huo­mat­ta­vas­ti enem­män kuin ne, jot­ka eivät saa tar­vit­se­maan­sa ravin­toa (Phil­lips and Van Loon, 2011). Voi­ko syyt­tää vain gee­ne­jään vai onko taus­tal­la jotain muuta?

Kuva 1: Nopeas­ti kehit­ty­vil­lä yksi­löil­lä näyt­täi­si ole­van suu­rem­pi ribo­so­mi­pi­toi­suus ja lihas­pro­teii­ni­syn­tee­si har­joi­tus­ten jäl­keen ver­rat­tu­na hei­kos­ti kehit­ty­viin yksi­löi­hin. Lisäk­si hypo­teet­ti­ses­ti hyvin kehit­ty­vil­lä on enem­män satel­liit­ti­so­lu­ja, tumia, andro­gee­ni­sig­na­loin­tia, mito­kondrioi­den volyy­mia ja hius­ve­ri­suo­nis­toa. Kuvan läh­de Roberts et al., 2018.

Elämäntavat tärkeämpiä kuin geenit?

Gene­tiik­ka on eit­tä­mät­tä tär­keäs­sä roo­lis­sa yksi­lön kehi­tyk­ses­sä. Esi­mer­kik­si ACTN3 gee­nin on näy­tet­ty ole­van yhtey­des­sä eroi­hin lihas­voi­man ja tehon­tuo­ton kehit­ty­mi­ses­sä har­joit­te­lus­sa (Jones et al., 2016; Eynon et al., 2013). Toi­saal­ta ident­ti­sil­lä kak­so­sil­la huo­mat­tiin, että elin­ta­voil­la on val­ta­va mer­ki­tys. Ident­ti­set kak­so­set ovat peri­mäl­tään ja geno­tyy­pil­tään täy­sin saman­lai­set. Peri­män olles­sa ident­ti­nen, vain olo­suh­teet vai­kut­ta­vat kehi­tyk­seen ja näin kak­sos­tut­ki­muk­set toi­mi­vat esi­merk­ki­nä olo­suh­tei­den vai­ku­tuk­ses­ta yksi­lön kehi­tyk­seen. 52 vuo­tiais­ta kak­so­sis­ta toi­nen oli har­joi­tel­lut kes­tä­vyys­tyyp­pi­ses­ti yli 30 vuot­ta ja toi­nen kak­so­sis­ta ei ollut liik­ku­nut juu­ri lain­kaan. Har­joi­tel­leel­la kak­so­sel­la oli pie­nem­pi kehon­mas­sa, ras­va­mas­sa, lepo­sy­ke, veren­pai­ne, koles­te­ro­li, plas­man trigly­se­ri­di- ja glu­koo­si­pi­toi­suus. Lisäk­si hänel­lä oli kor­keam­pi anae­ro­bi­nen ja aero­bi­nen kes­tä­vyys­ky­ky. Toi­saal­ta hänel­lä oli vähem­män lihas­ta ja voi­maa ver­rat­tu­na ei-har­joi­tel­lee­seen kak­so­seen. Hänel­lä oli enem­män hitai­ta lihas­so­lu­ja ja vähem­män nopei­ta lihas­so­lu­ja sekä kor­keam­pi AMPK pro­teii­nin esiin­ty­vyys (kes­tä­vyys­sig­na­loin­tiin lii­tet­ty väy­lä). Yhteen­sä kes­tä­vyys­har­joi­tel­leel­la kak­so­sel­la oli 55% enem­män hitai­ta lihas­so­lu­ja ja jopa 12,4 ml/kg/min kor­keam­pi VO2max ja 8,6% mata­lam­pi rasvaprosentti. 

Tut­ki­muk­ses­sa koros­tet­tiin elin­ta­po­jen ja har­joit­te­lun voi­ma­kas­ta vai­ku­tus­ta koko kehoon. Gee­nit mää­rit­tä­vät tie­tyn taus­tan har­joit­te­lul­le, mut­ta riit­tä­väl­lä har­joit­te­lul­la ja elin­ta­voil­la voi­daan vai­kut­taa erit­täin tehok­kaas­ti halut­tui­hin adap­taa­tioi­hin. Myös muis­sa kak­sois­tut­ki­muk­sis­sa on huo­mat­tu (Marsh et al., 2020), ettei­vät gee­nit vält­tä­mät­tä ole ihan niin tär­keäs­sä roo­lis­sa har­joi­tusa­dap­taa­tios­sa kuin aikai­sem­min on arvioi­tu eri poikittaistutkimuksissa. 

Toi­saal­ta David­se­nin ja kump­pa­nien tut­ki­mus osoit­ti, että mik­roiR­NA-muu­tok­set alhai­sen vas­teen ihmi­sil­lä voi­vat estää kas­vua ja uudis­tu­mis­ta edis­tä­vien gee­nien “akti­voi­tu­mi­sen”. Hei­dän mukaan­sa lihas­kas­vu liit­ty mik­roR­NA pitoi­suuk­sien muu­tok­siin ja hei­dän ana­lyy­sin­sa viit­taa sii­hen, että mikroRNA:lla voi olla roo­li voi­ma­har­joit­te­lun aiheut­ta­mis­sa muu­tok­sis­sa ja sii­nä kehit­tyy­kö ihmi­nen vai ei. Näyt­täi­si­kin sil­tä, että niin gee­neil­lä kuin olo­suh­teil­la on merkitystä. 

Kuva 2: Into­hi­mon lisäk­si myös gee­nit ja olo­suh­teet vai­kut­ta­vat har­joi­tusa­dap­taa­tioi­den määrään.

Mitä tehdä jos kehitystä ei tule - lisää harjoituskuormaa?

Har­joi­tus­kuor­maa, eli volyy­mia, on pidet­ty tär­keim­pä­nä teki­jä­nä mor­fo­lo­gi­sia muu­tok­sia var­ten (Figuei­re­do et al., 2018). Mat­tocks et al. (2017) huo­ma­si­vat, että koe­hen­ki­löt, jot­ka suo­rit­ti­vat hyvin kor­kean inten­si­tee­tin voi­ma­har­joi­tuk­sia saa­vut­ti­vat saman voi­ma­ta­so­jen kas­va­mi­sen kuin ne, jot­ka har­joit­te­li­vat suu­rem­mal­la volyy­mil­la. Kui­ten­kin vain kor­keam­man volyy­min har­joit­te­lu­ryh­mä saa­vut­ti lihas­mas­san kasvua. 

Mole­kyy­li­ta­son näkö­kul­mas­ta suu­rem­pi har­joi­tus­vo­lyy­mi vai­kut­taa myofi­bril­laa­ri­sen pro­teii­ni­syn­tee­sin ana­bo­li­sen sig­na­loin­tiin posi­tii­vi­ses­ti. Suu­rem­pi volyy­mi on myös tär­keä p70S6k- ja S6-fos­fo­ry­laa­tion kan­nal­ta voi­ma­har­joit­te­lun jäl­keen (Burd ym., 2010a, b; Terzis ym., 2010). p70S6k- ja S6-fos­fo­ry­laa­tio sää­te­le­vät muun muas­sa solu­jen kas­vua vai­kut­ta­mal­la pro­teii­ni­syn­tee­sin komponentteihin. 

Kuinka paljon volyymia on tarpeeksi?

Meta-ana­lyy­si ikään­ty­vien ihmis­ten lihas­mas­sa­har­joit­te­lus­ta osoit­ti, että mer­kit­tä­väm­mät muu­tok­set liit­tyi­vät eri­tyi­ses­ti har­joi­tus­oh­jel­miin, jos­sa teh­tiin enem­män sar­jo­ja koko har­joi­tus­ses­sion aika­na (Peter­son ym., 2011). Useis­sa tut­ki­muk­sis­sa on huo­mat­tu useam­man sar­jan yli­voi­mai­suus ver­rat­tu­na yhteen sar­jaan sekä nuo­ril­la että van­hem­mil­la yksi­löil­lä (Kra­mer, 1997; Radael­li ym., 2014a,b). Myös Krie­ge­rin (2010) teke­mäs­sä meta-ana­lyy­sis­sä huo­mat­tiin, että usean sar­jan suo­rit­ta­mi­nen on todel­la tehok­kaam­paa kuin yhden sar­jan suo­rit­ta­mi­nen. Toi­saal­ta samas­sa ana­lyy­sis­sä huo­mat­tiiin, että nel­jän tai kuu­den sar­jan suo­rit­ta­mi­nen ei ole parem­paa kuin kah­den tai kol­men sar­jan suo­rit­ta­mi­nen. Eli har­joi­tus­vo­lyy­min lisäyk­sel­lä voi­si olla teo­reet­ti­nen mak­si­mi yksi­lön koh­dal­la. Lisäk­si vai­kut­taa sil­tä, ettei supis­tus­ta­pa ole yhtä tär­keä kuin volyy­mi, jos halu­taan saa­vut­taa mole­kyy­li­ta­son muu­tok­sia har­joi­tus­ses­sion jäl­keen (Gar­ma ym., 2007). 

Tie­tääk­sem­me vain yksi tut­ki­mus on yrit­tä­nyt vas­ta­ta suo­raan sii­hen, voi­daan­ko har­joi­tus­vo­lyy­mil­la vai­kut­taa yksi­löl­li­siin eroi­hin. Nunes ym. (2021b) huo­ma­si­vat, että hei­kos­ti kehit­ty­vät ihmi­set eivät kehit­ty­neet, vaik­ka har­joi­tus­vo­lyy­mia nos­tet­tiin. Toi­saal­ta tämä oli ret­ros­pek­tii­vi­nen data-ana­lyy­si, eikä suo­ra inter­ven­tio­tut­ki­mus. Scar­pel­li et al. (2020) näyt­ti­vät myös, että ei-opti­mi har­joi­tus­vo­lyy­mi hait­taa lihas­kas­vua nuo­ril­la har­joi­tel­leil­la yksi­löil­lä. Toi­saal­ta Mon­te­ro & Lun­by (2017) huo­ma­si­vat mie­len­kin­toi­ses­sa tut­ki­muk­ses­saan, että kaik­ki hei­kos­ti har­joit­te­luun vas­tan­neet yksi­löt muut­tui­vat posi­tii­vi­ses­ti kehit­ty­neik­si yksi­löik­si kun har­joit­te­lua lisät­tiin run­saas­ti kah­del­le seu­raa­val­la har­joi­tus­vii­kol­le kuu­den har­joi­tus­vii­kon jäl­keen. Toi­saal­ta tut­ki­muk­ses­sa suo­ri­tet­tiin aero­bis­ta har­joit­te­lua, eikä voimaharjoittelua. 

Ham­mar­strö­min ja kump­pa­nien (2019) erit­täin mie­len­kiin­toi­ses­sa tut­ki­muk­ses­sa huo­mat­tiin kor­keam­man volyy­min kas­vat­ta­van enem­män lihas­ta ja voi­maa ver­rat­tu­na pie­nem­pään har­joi­tus­kuor­maan. Har­joit­te­lu toteu­tet­tiin niin, että vas­tak­kai­nen jal­ka teki vähem­män volyy­mia ja toi­nen jal­ka enem­män. Har­joi­tus­kuor­ma oli hyvin pie­ni, mut­ta ero kol­min­ker­tai­nen (1 sar­ja vs 3 sar­jaa). 13 osal­lis­tu­jaa hyö­tyi sel­väs­ti enem­män suu­rem­mas­ta volyy­mis­ta lihas­mas­san koh­dal­la ja 16 osal­lis­tu­jaa voi­man koh­dal­la. Ainoas­taan kol­me osal­lis­tu­jaa hyö­tyi pie­nem­mäs­tä har­joi­tus­kuor­mi­tuk­ses­ta. Lisäk­si yksi­lö­ta­sol­la kor­keam­pi­har­joi­tus­vo­lyy­mi oli yhtey­des­sä lisään­ty­nee­seen ribo­so­mien bio­ge­nee­siin eli uudi­muo­dos­tuk­seen. Myös muut ovat toden­neet saman asian (Figuei­re­do et al. 2015; Stec et al. 2016; Mobley et al. 2018). 

Oletko ravi- vai työhevonen?

Lihas­so­lu­ja­kau­ma ei seli­tä yksin yksi­löl­li­siä ero­ja voi­ma­har­joit­te­lus­sa, mut­ta erit­täin mie­len­kiin­toi­ses­ti Van Vos­sel et al. (2023) huo­ma­si­vat, että saa­dak­seen saman lihas­mas­san kas­vun aikaan enem­män hitai­ta lihas­so­lu­ja omaa­vien pitää teh­dä enem­män työ­tä. Tämä tukee aja­tus­ta sii­tä, että hidas­so­luk­kois­ten yksi­löi­den voi olla kan­na­ta­vaa teh­dä suu­rem­paa volyy­mii­kuor­maa. Kan­nat­taa siis roh­keas­ti kokeil­la suu­rem­paa volyy­mia, jos et kehi­ty. Jot­kut yksi­löt ovat kuin die­sel­ko­nei­ta, jot­ka vaa­ti­vat enem­män kuor­maa läh­teäk­seen kun­nol­la käyntiin. 

Mis­tä sit­ten tie­tää mikä on sopi­va har­joi­tus­kuor­ma? Kan­nat­taa aloit­taa mää­rit­tä­mäl­lä vähim­mäi­san­nos, jol­la pys­tyy kehit­ty­mään. Tämän poh­jal­ta voi läh­teä etsi­mään opti­maa­lis­ta har­joi­tus­kuor­mi­tusan­nos­ta (Fis­her ym., 2017).

Jos kehitystä ei tule, niin vaihda harjoitusmuotoa

Har­joi­tus­muo­don vaih­ta­mi­sel­la voi myös tul­la kehi­tys­tä. Esi­mer­kik­si täs­sä mie­len­kiin­toi­ses­sa tut­ki­muk­ses­sa 16 rug­by­pe­laa­jaa teki­vät nel­jä eri­lais­ta ree­niä, jol­la pyrit­tiin mää­rit­tä­mään tes­tos­te­ro­ni­vas­te jokai­sen eri har­joi­tuk­sen koh­dal­la. Tar­koi­tuk­se­na oli mita­ta, mikä har­joi­tus­muo­to tuot­ti suu­rim­man ja pie­nim­män tes­tos­te­ro­ni­vas­teen. 8 pelaa­jaa suo­rit­ti kol­men vii­kon har­joi­tus­blo­kin, jos­sa teh­tiin sitä har­joi­tus­muo­toa, joka tuot­ti mak­si­maa­li­sen tes­tos­te­ro­ni­vas­teen ja toi­nen poruk­ka suo­rit­ti saman pitui­sen har­joi­tus­pät­kän, mut­ta teh­den sitä har­joi­tus­muo­toa, joka tuot­ti pie­nim­män testosteronivasteen. 

Har­joi­tus­liik­keet oli­vat samat, eli penk­ki, jal­kapräs­si, ala­tal­ja ja kyy­ky, mut­ta sar­jat ja tois­tot vaihtelivat:

  • Har­joi­tus­muo­to 1: 4 x 10 x 70% 2min palautus. 
  • Har­joi­tus­muo­to 2: 3 × 5 x 85% 3min palautus.
  • Har­joi­tus­muo­to 3: 5 × 15 x 55% 1min palautus.
  • Har­joi­tus­muo­to 4: 3 × 5 x 40% 3min palautus.

Kaik­ki pelaa­jat kehit­tyi­vät mer­kit­tä­väs­ti pen­kis­sä ja jal­kapräs­sis­sä kun he teki­vät har­joi­tus­muo­toa, joka aiheut­ti suu­rim­man tes­tos­te­ro­ni­vas­teen. Toi­saal­ta pie­nim­män hor­mo­naa­li­sen vas­teen aiheut­ta­nut har­joi­tus­muo­to ei aiheut­ta­nut mitään muu­tok­sia jopa 75% urhei­li­jois­ta ja joil­la­kin yhden tois­ton mak­si­mi jopa pieneni. 

Mie­len­kiin­toi­ses­ti molem­mil­la hen­ki­löil­lä, joil­la oli suu­rin tes­tos­te­ro­ni­vas­te 3 × 5 x 40% pro­to­kol­lal­le, esiin­tyi 4 × 10 x 70% pro­to­kol­la vähäi­sim­pä­nä vas­tee­naan sekä ennen että jäl­keen har­joi­tus­jak­son. Samal­la taval­la seit­se­mäs­tä yksi­lös­tä, jot­ka vas­ta­si­vat opti­maa­li­ses­ti 4 × 10 x 70% pro­to­kol­lal­le, vii­del­le (71%) 5 × 15 x 55% pro­to­kol­la tuot­ti vähi­ten tes­tos­te­ro­ni­vas­tet­ta. Tut­ki­mus osoit­taa hyvin, että joil­le­kin eri­lai­set har­joi­tus­muo­dot näyt­täi­si­vät toi­mi­vat parem­min kuin toi­sil­le. Onkin tär­keä etsiä juu­ri yksi­löl­le sopi­va harjoitusmuoto.

Henkinen jaksaminen ja vahvuus voivat edesauttaa harjoittelua

Tals­ne­sin ja kump­pa­nien tut­ki­muk­ses­sa pys­tyt­tiin erot­te­le­maan kor­keas­ti ja hei­kos­ti har­joit­te­luun vas­taa­via kes­tä­vyy­sur­hei­li­joi­ta kuu­den kuu­kau­den har­joit­te­lu­jak­son jäl­keen. Mie­len­kiin­toi­ses­ti tut­ki­muk­ses­sa oli haas­ta­tel­tu val­men­ta­jia, että mis­tä erot voi­si­vat joh­tua. Val­men­ta­jien mukaan kor­keam­pi moti­vaa­tio ja vah­vem­mat val­men­ta­ja-urhei­li­ja suh­teet kor­kean vas­teen ryh­mäs­sä vai­kut­ti­vat yksi­löl­li­ses­ti opti­moi­tu­jen har­joi­tus- ja palau­tu­mis­ru­tii­nien käyt­töön, mikä joh­ti posi­tii­vi­sem­paan suo­ri­tus­ky­vyn kehi­tyk­seen. Tämä joh­ti myös sii­hen, että kor­kean vas­teen ryh­män urhei­li­jat suo­rit­ti­vat suu­rem­pia har­joi­tus­mää­riä (vii­koit­tai­nen kuor­mi­tus: 3825 ± 1013 vs. 3228 ± 748 ja kuor­mi­tus/­vo­lyy­mi-suh­de: 4,9 ± 0,6 vs. 4,2 ± 0,5; molem­mat P ≤ 0,05) ja heil­lä oli vähem­män loukkaantumisia/sairastumisia ver­rat­tu­na hei­kos­ti kehit­ty­viin (5 ± 3 vs. 10 ± 5 päi­vää; P = 0,07).

Yhteenveto

  • Yksi­löi­den välil­lä on run­saas­ti ero­ja kehittymisessä
  • Ei kan­na­ta selit­tää kehit­ty­mät­tö­myyt­tään gee­neil­lä. Gee­nit aset­ta­vat tie­tyt reu­naeh­dot, mut­ta kehi­tys on mah­dol­lis­ta kaikille. 
  • Joil­le­kin yksi­löil­le sopii suu­rem­pi har­joi­tus­kuor­ma kuin toi­sil­le. Yksi­löl­li­sen vas­te­pro­fii­lin etsi­mi­nen on tärkeää. 
  • Eri­lai­sia har­joi­tus­muo­to­ja kokei­le­mal­la voi myös saa­da kehi­tys­tä aikaan. 

Lähteet

  • Montero,D., and Lund­by, C. (2017). Refu­ting the myth of non-res­pon­se to exerci­se trai­ning: ’non-res­pon­ders’ do res­pond to hig­her dose of trai­ning. J. Phy­siol. 595, 3377–3387. doi: 10.1113/JP273480
  • Nunes, J. P., Pina, F. L., Ribei­ro, A. S., Cun­ha, P. M., Kas­sia­no, W., Cos­ta, B. D., et al. (2021b). Res­pon­si­ve­ness to muscle mass gain fol­lowing 12 and 24 weeks of resis­tance trai­ning in older women. Aging Clin. Exp. Res. 33, 1071–1078. doi: 10.1007/s40520-020-01587-z
  • Scar­pel­li, M. C., Nóbre­ga, S. R., San­ta­nie­lo, N., Alva­rez, I. F., Oto­bo­ni, G. B., Ugri­nowitsch, C., et al. (2020). Muscle hypert­rop­hy res­pon­se is affec­ted by pre­vious resis­tance trai­ning volu­me in trai­ned indi­vi­duals. J. Strength Cond. Res. 27, 1–5. doi: 10.1519/JSC.0000000000003558
  • Fis­her, J. P., Stee­le, J., Gen­til, P., Gies­sing, J., andWestcott,W. L. (2017). A mini­mal dose approach to resis­tance trai­ning for the older adult; the prop­hy­lac­tic for aging. Exp. Geron­tol., 99, 80–86. doi: 10.1016/j.exger.2017.09.01
  • Kra­mer, J. B. (1997). Effects of single vs mul­tiple sets of weight trai­ning: impact of volu­me, inten­si­ty, and varia­tion. J. Strength Cond. Res. 11, 143–147. doi: 10.1519/00124278-199708000-00002
  • Radael­li, R., Bot­ton, C. E., Wil­helm, E. N., Bot­ta­ro, M., Brown, L. E., Lacer­da, F., et al. (2014a). Time cour­se of low- and high-volu­me strength trai­ning on neu­ro­muscu­lar adap­ta­tions and muscle qua­li­ty in older women. Age 36, 881–892. doi: 10.1007/s11357-013-9611-2
  • Radael­li, R.,Wilhelm, E. N., Bot­ton, C. E., Rech, A., Bottaro,M., Brown, L. E., et al. (2014b). Effects of single vs. mul­tiple-set short-term strength trai­ning in elder­ly women. Age 36:9720. doi: 10.1007/s11357-014-9720-6
  • Krie­ger, J. W. (2010). Single vs. mul­tiple sets of resis­tance exerci­se for muscle hypert­rop­hy: a meta-ana­ly­sis. J. Strength. Cond. Res. 24, 1150–1159. doi: 10.1519/JSC.0b013e3181d4d436
  • Jones, N., Kie­ly, J., Suraci, B., Col­lins, D. J., de Lorenzo, D., Pic­ke­ring, C., … & Gri­mal­di, K. A. (2016). A gene­tic-based algo­rithm for per­so­na­lized resis­tance trai­ning. Bio­lo­gy of sport, 33(2), 117.
  • Eynon, N., Han­son, E. D., Lucia, A., & Houwe­ling, P. J. (2013). Genes for eli­te power and sprint per­for­mance: ACTN3 leads the way. Sports Medici­ne, 43(9), 803-817.
  • Rhea, M. R., Alvar, B. A., Bur­kett, L. N., & Ball, S. D. (2003). A meta-ana­ly­sis to deter­mi­ne the dose res­pon­se for strength deve­lop­ment. Medici­ne and science in sports and exerci­se, 35(3), 456-464.
  • Phil­lips, S. M., & Van Loon, L. J. (2011). Die­ta­ry pro­tein for ath­le­tes: from requi­re­ments to opti­mum adap­ta­tion. Jour­nal of sports sciences, 29(sup1), S29-S38.
  • Burd, N. A., Holwer­da, A.M., Sel­by, K. C.,West, D.W., Staples, A.W., Cain, N. E., et al. (2010a). Resis­tance exerci­se volu­me affects myofi­bril­lar pro­tein synt­he­sis and ana­bo­lic sig­nal­ling molecu­le phosp­ho­ry­la­tion in young men. J. Phy­siol. 588, 3119–3130. doi: 10.1113/jphysiol.2010.192856
  • Terzis, G., Spen­gos, K., Mascher, H., Geor­gia­dis, G., Man­ta, P., and Blom­strand, E. (2010). The degree of p70 S6k and S6 phosp­ho­ry­la­tion in human ske­le­tal muscle in res­pon­se to resis­tance exerci­se depends on the trai­ning volu­me. Eur. J. Appl. Phy­siol. 110, 835–843. doi: 10.1007/s00421-010-1527-2
  • Gar­ma, T., Kobay­as­hi, C., Had­dad, F., Adams, G. R., Bodell, P. W., and Baldwin, K. M. (2007). Simi­lar acu­te molecu­lar res­pon­ses to equi­va­lent volu­mes of iso­met­ric, lengt­he­ning, or shor­te­ning mode resis­tance exerci­se. J. Appl. Phy­siol. 102, 135–143. doi: 10.1152/japplphysiol.00776.2006
  • Peterson,M. D., Sen, A., and Gor­don, P.M. (2011). Influence of resis­tance exerci­se on lean body mass in aging adults: a meta-ana­ly­sis. Med. Sci. Sports Exerc. 43, 249–258. doi: 10.1249/MSS.0b013e3181eb626
  • Ham­mar­ström, D., Øfs­teng, S., Koll, L., Hanes­tad­hau­gen, M., Hol­lan, I., Apró, W., Whist, J.E., Blom­strand, E., Røn­nes­tad, B.R. and Ellef­sen, S. (2020), Bene­fits of hig­her resis­tance-trai­ning volu­me are rela­ted to ribo­so­me bio­ge­ne­sis. J Phy­siol, 598: 543-565. https://doi.org/10.1113/JP278455
  • Figuei­re­do VC, Cal­dow MK, Mas­sie V, Markworth JF, Came­ron-Smith D & Blaze­vich AJ (2015). Ribo­so­me bio­ge­ne­sis adap­ta­tion in resis­tance trai­ning-induced human ske­le­tal muscle hypert­rop­hy. Am J Phy­siol Endoc­ri­nol Metab 309, E72– E83.
  • Mobley CB, Haun CT, Rober­son PA, Mum­ford PW, Kep­hart WC, Rome­ro MA, Osburn SC, Vann CG, Young KC, Beck DT, Mar­tin JS, Lockwood CM & Roberts MD (2018). Bio­mar­kers associa­ted with low, mode­ra­te, and high vas­tus late­ra­lis muscle hypert­rop­hy fol­lowing 12 weeks of resis­tance trai­ning. PLoS One 13, e0195203.
  • Stec MJ, Kel­ly NA, Many GM, Wind­ham ST, Tuggle SC & Bam­man MM (2016). Ribo­so­me bio­ge­ne­sis may aug­ment resis­tance trai­ning-induced myofi­ber hypert­rop­hy and is requi­red for myotu­be growth in vit­ro. Am J Phy­siol Endoc­ri­nol Metab 310, E652– E661.
  • Bea­ven, C Martyn1; Cook, Chris­tian J2; Gill, Nic­ho­las D1. Sig­ni­ficant Strength Gains Obser­ved in Rug­by Players after Speci­fic Resis­tance Exerci­se Pro­tocols Based on Indi­vi­dual Sali­va­ry Tes­tos­te­ro­ne Res­pon­ses. Jour­nal of Strength and Con­di­tio­ning Research 22(2):p 419-425, March 2008. | DOI: 10.1519/JSC.0b013e31816357d4 
  • Tals­nes RK, van den Til­laar R, Cai X, Sand­bakk Ø. Com­pa­ri­son of High- vs. Low-Res­pon­ders Fol­lowing a 6-Month XC Ski-Speci­fic Trai­ning Period: A Mul­ti­discipli­na­ry Approach. Front Sports Act Living. 2020 Sep 8;2:114. doi: 10.3389/fspor.2020.00114. PMID: 33345103; PMCID: PMC7739740.
  • Bath­ga­te KE, Bagley JR, Jo E, Tal­mad­ge RJ, Tobias IS, Brown LE, Coburn JW, Are­va­lo JA, Segal NL, Gal­pin AJ. Muscle health and per­for­mance in monozy­go­tic twins with 30 years of discor­dant exerci­se habits. Eur J Appl Phy­siol. 2018 Oct;118(10):2097-2110. doi: 10.1007/s00421-018-3943-7. Epub 2018 Jul 14. PMID: 30006671.
  • Marsh CE, Tho­mas HJ, Nay­lor LH, Scur­rah KJ, Green DJ. Fit­ness and strength res­pon­ses to dis­tinct exerci­se modes in twins: Stu­dies of Twin Res­pon­ses to Unders­tand Exerci­se as a THe­ra­py (STRUETH) stu­dy. J Phy­siol. 2020 Sep;598(18):3845-3858. doi: 10.1113/JP280048. Epub 2020 Jul 7. PMID: 32567679.
  • David­sen PK, Gal­lag­her IJ, Hart­man JW, Tar­no­pols­ky MA, Dela F, Hel­ge JW, Tim­mons JA, Phil­lips SM. High res­pon­ders to resis­tance exerci­se trai­ning demon­stra­te dif­fe­ren­tial regu­la­tion of ske­le­tal muscle mic­roR­NA expres­sion. J Appl Phy­siol (1985). 2011 Feb;110(2):309-17. doi: 10.1152/japplphysiol.00901.2010. Epub 2010 Oct 28. PMID: 21030674.
  • Van Vos­sel, K., Har­deel, J., de Cas­tee­le, F.V., Van der Ste­de, T., Weyns, A., Boo­ne, J., Blem­ker, S., Lie­vens, E. and Dera­ve, W. (2023), Can muscle typo­lo­gy explain the inter-indi­vi­dual varia­bi­li­ty in resis­tance trai­ning adap­ta­tions?. J Phy­siol. Accep­ted Aut­hor Manusc­ript. https://doi.org/10.1113/JP284442
  • Figuei­re­do VC, de Sal­les BF, Tra­ja­no GS. Volu­me for Muscle Hypert­rop­hy and Health Outco­mes: The Most Effec­ti­ve Variable in Resis­tance Trai­ning. Sports Med. 2018 Mar;48(3):499-505. doi: 10.1007/s40279-017-0793-0. PMID: 29022275.
  • Mat­tocks KT, Buck­ner SL, Jes­see MB, Dan­kel SJ, Mouser JG, Loen­ne­ke JP. Prac­ticing the Test Pro­duces Strength Equi­va­lent to Hig­her Volu­me Trai­ning. Med Sci Sports Exerc. 2017 Sep;49(9):1945-1954. doi: 10.1249/MSS.0000000000001300. PMID: 28463902.
Isometrinen voimaharjoittelu nopeuslajeissa – osa 1 minkälaisia adaptaatioita isometrinen harjoittelu aiheuttaa?

Isometrinen voimaharjoittelu nopeuslajeissa – osa 1 minkälaisia adaptaatioita isometrinen harjoittelu aiheuttaa?

Iso­met­ri­sel­lä lihas­työ­ta­val­la vii­ta­taan lihas­työ­hön, mis­sä lihas­jän­ne­komplek­sin pituu­des­sa ei tapah­du muu­tos­ta. Kon­sent­ri­ses­sa lihas­työ­ta­vas­sa lihas lyhe­nee supis­tues­saan ja eksent­ri­ses­sä lihas­työ­ta­vas­sa lihas pite­nee lihas­so­lu­jen supis­tues­sa. Esi­merk­ki­nä kyy­kys­tä ylös pon­nis­ta­mi­nen on kon­sent­ris­ta lihas­työ­tä suu­rim­mal­la osal­la jal­ko­jen lihak­sia ja lihas­ten pituus lyhe­nee, kun taas eksent­ri­nen toi­min­ta piden­tää lihas­pi­tuut­ta. Täs­tä esi­merk­ki­nä, kun men­nään alas­päin kyy­kys­sä.  Iso­met­ris­tä har­joit­te­lua voi­daan käy­tän­nös­sä teh­dä monel­la eri taval­la, mut­ta täs­sä jutus­sa kes­ki­ty­tään pel­käs­tään työs­ken­te­lyyn liik­ku­ma­ton­ta esi­net­tä vasten.

Iso­met­ri­nen har­joit­te­lu on eri­tyi­sen mie­len­kiin­toi­nen aihea­lue urhei­li­joil­le, kos­ka iso­met­ris­tä har­joit­te­lua voi hyö­dyn­tää posi­tii­vis­ten her­mo­li­has­jär­jes­tel­män adap­taa­tioi­den saa­vut­ta­mi­sek­si ilman lii­al­lis­ta väsy­mys­tä, mitä perin­tei­nen kes­ki­ras­kas voi­ma­har­joit­te­lu aiheuttaa. 

VIDEO 1: Ylei­sin tapa toteut­taa käy­tän­nös­sä iso­met­ris­tä voi­ma­har­joit­te­lua liik­ku­ma­ton­ta esi­net­tä vas­ten on käyt­tää tan­koa ja suo­ja­rau­to­ja tai vas­taa­via tukirakenteita. 

Minkälaisia adaptaatiota isometrinen harjoittelu aiheuttaa

Voiko pelkällä isometrisellä harjoittelulla kasvattaa lihasta?

Kyl­lä voi! Iso­met­ri­nen har­joit­te­lu 42–100 päi­vän ajan on joh­ta­nut 5,4–23% lihak­sen poik­ki­pin­ta-alan kas­vuun ja jopa 91,7% nousuun mak­si­mi­voi­mas­sa (28-37). Pidem­pi­kes­toi­nen inter­ven­tio näyt­täi­si vai­kut­ta­van huo­mat­ta­vas­ti lihak­sen kokoon. Mitä pidem­pi inter­ven­tio oli, sitä enem­män lihas kas­voi. Hypert­ro­fi­aan vai­kut­ti myös har­joit­te­lun inten­si­teet­ti, voluu­mi, supis­tuk­sen kes­to ja lihak­sen pituus. 

Eri­tyi­ses­ti pit­kil­lä lihas­pi­tuuk­sil­la teh­ty iso­met­ri­nen har­joit­te­lu paran­taa yli­voi­mai­ses­ti enem­män lihak­sen kokoa ver­rat­tu­na lyhyil­lä lihas­pi­tuuk­sil­la teh­tyyn iso­met­ri­seen har­joit­te­luun, vaik­ka volyy­mi oli­si tasat­tu näi­den ryh­mien välil­lä (1, 2 & 3). Tulok­set ovat lähes saman­suun­tai­sia, kun ver­ra­taan iso­met­ris­tä har­joit­te­lua dynaa­mi­seen har­joit­te­luun. Myös nor­maa­lis­sa dynaa­mi­ses­sa voi­ma­har­joit­te­lus­sa näyt­täi­si laa­ja lii­ke­ra­ta ole­van huo­mat­ta­vas­ti hyö­dyl­li­sem­pi hypert­ro­fian kan­nal­ta ver­rat­tu­na vajai­siin lii­ke­ra­toi­hin (4, 5 & 6). Yksi syy tähän voi olla, että pit­käl­lä lihas­pi­tuu­del­la teh­dyt supis­tuk­set näyt­täi­si­vät tuot­ta­van huo­mat­ta­vas­ti enem­män lihas­vau­rioi­ta ver­rat­tu­na lyhyel­lä lihas­pi­tuu­del­la teh­tä­viin har­joit­tei­siin (7). Tämä joh­tuu sii­tä, että nive­len vipu­var­si kas­vaa pit­kil­lä lihas­pi­tuuk­sil­la ja näin lisää mekaa­nis­ta jän­ni­tys­tä lihak­ses­sa ver­rat­tu­na lyhyem­pään vipu­var­teen. Suu­rem­pi mekaa­ni­nen jän­ni­tys aiheut­taa enem­män lihas­vau­rioi­ta. Lisäk­si pit­kät lihas­pi­tuu­det kulut­ta­vat enem­män hap­pea, vaa­ti­vat enem­män veren­kier­rol­ta töi­tä ja koko­nai­suu­des­saan lisää­vät meta­bo­liit­tien kerään­ty­mis­tä enem­män kuin lyhyet lihas­pi­tuu­det (8). Meta­bo­li­set teki­jät ovat tut­ki­tus­ti myös yhtey­des­sä lihas­kas­vuun (9). Eli jos tavoit­tee­na on spe­si­fi lihas­kas­vu iso­met­ri­ses­sä har­joit­te­lus­sa, niin pit­kät lihas­pi­tuu­det ovat ehdot­to­mas­ti paras valinta. 

Volyy­mil­lä on sel­väs­ti väliä myös iso­met­ri­ses­sä har­joit­te­lus­sa, kun tavoit­tee­na on lihas­kas­vu. Meyers (10) ver­tai­li mata­la volyy­mis­ta har­joit­te­lua (3 x 6 sekun­tia mak­si­maa­li­sel­la inten­si­tee­til­lä) kor­kea volyy­mi­seen har­joit­te­luun (20 x 6 sekun­tia mak­si­maa­li­sel­la inten­si­tee­til­lä) hauis­li­hak­sel­la. Kuu­den vii­kon jäl­keen enem­män volyy­mia teh­nyt ryh­mä oli saa­vut­ta­nut sel­väs­ti isom­man muu­tok­sen hauis­li­hak­sen ympä­rys­mi­tas­sa ver­rat­tu­na mata­la­vo­lyy­mi­seen ryh­mään. Myös Bals­haw ja kump­pa­nit (11) tote­si­vat, että suu­rem­pi mää­rä volyy­mia (40 x 3 sekun­tia 75% iso­met­ri­ses­tä mak­si­mis­ta) tuot­ti enem­män lihas­kas­vua etu­rei­teen 12-vii­kon aika­na ver­rat­tu­na pie­nem­pään har­joi­tus­kuor­maan (40 x 1 sekun­tia 80% iso­met­ri­ses­tä maksimista). 

Mie­len­kiin­tois­ta on myös, että Schott ja kump­pa­nit (12) löy­si­vät, että pidem­pi­kes­toi­nen har­joit­te­lu (4 x 30 sekun­tia) tuot­ti enem­män hypert­ro­fi­aa ver­rat­tu­na lyhyem­pi­kes­toi­seen har­joit­te­luun (4 x 10 x 3 sekun­tia), vaik­ka lii­ke­suo­rit­tei­den koko­nais­kes­to oli lopul­ta sekun­nil­leen yhtä pit­kä. 14-vii­kon har­joit­te­lun jäl­keen etu­rei­den vas­tus late­ra­lis lihas kas­voi jopa 11,1% enem­män, kun lyhyem­pi­kes­toi­sia supis­tuk­sia teh­neel­lä ryh­mäl­lä ei löy­det­ty ollen­kaan mer­kit­se­vää muu­tos­ta etu­rei­den kas­vus­ta! Tämä voi joh­tua sii­tä, että pit­kään yllä­pi­de­tyt supis­tuk­set estä­vät veren­kier­ron ja vähen­tä­vät hapen satu­raa­tio­ta alu­eel­la, sti­mu­loi­den näin hypert­ro­fi­aa monien pai­kal­lis­ten ja sys­tee­mis­ten meka­nis­mien kautta. 

KUVA 1: Iso­met­ris­tä har­joit­te­lua voi­daan tut­kia nil­kan plan­taa­ri- tai dor­siflek­sio­ta tark­kai­le­mal­la tämän näköi­sel­lä koeasetelmalla.

Isometrinen harjoittelu muokkaa myös lihaksen arkkitehtuuria

Hypert­ro­fi­aa haet­taes­sa lihas­työ­ta­val­la ei ole hir­veäs­ti mer­ki­tys­tä, sil­lä niin dynaa­mi­sel­la, eksent­ri­sel­lä ja iso­met­ri­sel­lä har­joit­te­lul­la voi­daan saa­da lihas­kas­vua aikai­sek­si, mut­ta jos tavoit­tee­na on saa­da muu­tok­sia aikaan lihak­sen ark­ki­teh­tuu­riin, on liha­työ­ta­val­la todel­la­kin merkitystä. 

Laa­duk­kai­ta tut­ki­muk­sia aihees­ta ei ole pal­joa, joten pää­tel­mien teke­mi­nen on haas­ta­vaa, mut­ta Noor­koiv ja kump­pa­nit (3) huo­ma­si­vat, että pidem­mäl­lä lihas­pi­tuu­del­la teh­ty iso­met­ri­nen har­joit­te­lu (pol­vi­kul­ma 38.1 ± 3.7°) kas­vat­ti vas­tus late­ra­lik­sen lihas­fascicu­luk­sen (lihas­so­lu­kimp­pu, jota ympä­röi lihas­kal­vo) pituut­ta kes­kio­sas­sa lihas­ta mer­kit­se­väs­ti. Mie­len­kiin­toi­ses­ti lyhyem­mäl­lä lihas­pi­tuu­del­la teh­ty har­joit­te­lu kas­vat­ti taas dis­taa­li­ses­sa pääs­sä ole­van lihas­fascicu­luk­sen pituut­ta. Ainoas­taan yksi toi­nen tut­ki­mus (1) on rapor­toi­nut vas­tus late­ra­lik­sen lihas­fascicu­luk­sen pituu­den lisään­ty­mis­tä ja myös pen­naa­tio­kul­man muu­tok­ses­ta pit­käl­lä lihas­pi­tuu­del­la teh­dyn iso­met­ri­sen har­joit­te­lun jälkeen. 

Iso­met­ri­nen voi­ma­har­joit­te­lu näyt­täi­si aiheut­ta­van muu­tok­sia lihak­sen ark­ki­teh­tuu­riin ja eri­tyi­ses­ti lisää­vän lihas­fascicu­luk­sen pituut­ta ja ken­ties jopa aiheut­taa muu­tok­sia pen­naa­tio­kul­maan. Täl­lä on eri­tyi­ses­ti väliä, jos tavoit­tee­na on teh­dä urhei­li­jois­ta nopeam­pia, sil­lä esi­mer­kik­si sprint­te­reil­lä on pidem­mät lihas­fascicu­luk­set jalois­sa ver­rat­tu­na kes­tä­vyy­sur­hei­li­joi­hin (38) ja 100 met­rin juok­susuo­ri­tus on yhdis­tet­ty lihas­fascicu­luk­sien pituuk­siin (39).

Isometrisen harjoittelun vaikutukset jänteisiin 

Jän­teen tar­koi­tus on siir­tää voi­mia luun ja lihak­sen välil­lä mah­dol­lis­taen nive­len lii­ke. Ennen aja­tel­tiin jän­tei­den ole­van muut­tu­mat­to­mia, mut­ta onnek­si nyky­ään tie­de­tään jo, että jän­teet kyke­ne­vät adap­toi­tu­maan sti­mu­luk­seen mer­kit­se­väs­ti ja voi­vat käy­dä todel­la iso­ja ark­ki­teh­tuu­ri­sia muu­tok­sia läpi pit­kä­ai­kai­sen kuor­mi­tuk­sen johdosta. 

Esi­mer­kik­si kun ver­tail­laan eri lajien urhei­li­joi­ta akil­les­jän­ne­re­peä­män koke­miin ihmi­siin, on huo­mat­tu, että esi­mer­kik­si len­to­pal­loi­li­joil­la on huo­mat­ta­vas­ti suu­rem­pi akil­les­jän­ne (119 ± 5.9) ver­rat­tu­na akil­les­jän­ne­re­peä­män koke­miin ihmi­siin (101 ± 5.4). Mie­len­kiin­tois­ta oli, että kajak­kiur­hei­li­joil­la oli lähes saman­ko­koi­nen akil­les­jän­ne kuin repeä­män koke­mil­la ihmi­sil­lä (101 ± 5.6) (13). Kajak­kiur­hei­li­jat eivät juu­ri käy­tä akil­les­jän­tei­tään lajis­saan, joten har­joit­te­lul­la näyt­täi­si ole­van suu­ri vai­ku­tus jän­teen rakenteisiin.

Jän­teen adap­taa­tiot ovat erit­täin tär­kei­tä ja halut­tu­ja adap­taa­tioi­ta nopeus­la­jin urhei­li­joil­le, sil­lä jän­ne toi­mii nopeas­sa liik­kees­sä lii­kut­ta­ja­na jousen tavoin. Inten­si­teet­ti on ehdot­to­mas­ti tär­kein muut­tu­ja jän­teen adap­taa­tiois­sa. Kova inten­si­teet­ti­nen iso­met­ri­nen plan­taa­riflek­sion har­joit­te­lu (noin 90 % iso­met­ri­ses­tä mak­si­mis­ta) lisä­si akil­les­jän­teen poik­ki­pin­ta-alaa ja jäyk­kyyt­tä 14-vii­kon har­joit­te­luoh­jel­man aika­na jopa par­haim­mil­laan 36 % (14 & 15). Samaa ei huo­mat­tu mata­lain­ten­si­teet­ti­sel­lä har­joit­te­lul­la (55 % iso­met­ri­ses­tä mak­si­mis­ta). Myös muut ovat rapor­toi­neet saman­kal­tai­sia run­sai­ta muu­tok­sia jän­teen jäyk­kyy­des­sä (vaih­te­lu­vä­li 17,5 % - 61,6 %) iso­met­ri­sen voi­ma­har­joit­te­lun seu­rauk­se­na inten­si­tee­tin vaih­del­les­sa 70–100 % välil­lä iso­met­ri­ses­tä mak­si­mi­voi­mas­ta (16, 17 & 18). Näyt­täi­si sil­tä, että 70 % voi­si olla mini­mi-inten­si­teet­ti, joka vaa­di­taan halut­tu­jen jän­nea­dap­taa­tioi­den saavuttamiseksi. 

Räjäh­tä­vä iso­met­ri­nen voi­ma­har­joit­te­lu taas lisä­si jän­teen apo­neu­roo­sin elas­ti­suut­ta, mut­ta vähen­si jän­teen poik­ki­pin­ta-alaa (-2,8 %) (19). Iso­met­ri­sen har­joit­te­lun inten­si­tee­til­lä ja kes­tol­la saa­vu­te­taan hyvin eri­lai­sia adap­taa­tioi­ta. Jän­tei­den vah­vis­ta­mi­ses­sa tulee suo­sia pidem­piä ja inten­si­teet­ti kor­keal­la teh­ty­jä supis­tuk­sia, kun taas kisa­kau­del­la voi teh­dä terä­väm­piä elas­ti­suut­ta lisää­viä erit­täin lyhyi­tä supis­tuk­sia. Lisäk­si pidem­pi lihas­pi­tuus näyt­täi­si kehit­tä­vän jän­teen jäyk­kyyt­tä enem­män kuin har­joit­te­lu lyhyel­lä lihas­pi­tuu­del­la samal­la taval­la kuin lihas­kas­vus­sa (2). 

KUVA 2: Bruce Lee­kin käyt­ti iso­met­ris­tä har­joit­te­lua kehit­tä­mään omaan suorituskykyään.

Isometrisen voimaharjoittelun vaikutukset hermostoon

Her­mos­ton adap­taa­tiot ovat koko­nai­suu­des­saan hyvin har­joit­te­lus­pe­si­fe­jä. Esi­mer­kik­si Bals­haw ja kump­pa­nit (11) ver­tai­li­vat 12 vii­kon aika­na mak­si­maa­lis­ta voi­ma­har­joit­te­lua (1 sekun­nin rau­hal­li­nen nousu 75% iso­met­ri­ses­tä mak­si­mis­ta ja siel­lä 3s pito) räjäh­tä­vään voi­ma­har­joit­te­luun (mah­dol­li­sim­man nopeas­ti >90% iso­met­ri­seen mak­si­miin ja siel­lä 1s pito). Iso­met­ri­nen mak­si­mi­voi­ma kehit­tyi eni­ten mak­si­mi­voi­ma­har­joit­te­lul­la, mut­ta räjäh­tä­vä voi­ma­har­joit­te­lu lisä­si EMG aktii­vi­suut­ta ihan liik­keen alus­sa (0–100 ms aika­na) enem­män ver­rat­tu­na mak­si­mi­voi­ma­har­joit­te­luun. Nämä adap­taa­tiot oli­vat her­mos­to­pe­räi­siä ja oli­vat har­joit­te­lus­pe­si­fe­jä, kun mak­si­mi­voi­ma­har­joit­te­lu kehit­ti mak­si­mi­voi­maa ja räjäh­tä­vä voi­ma kehit­ti nope­aa voi­man­tuot­to­ky­kyä. Myös bal­lis­ti­nen iso­met­ri­nen har­joit­te­lu on joh­ta­nut saman­kal­tai­siin tulok­siin ja EMG ampli­tu­din para­ne­mi­seen ensim­mäi­sen 0-150 ms aika­na ver­rat­tu­na mak­si­mi­voi­ma­har­joit­te­luun (11, 23 & 24). 

Iso­met­ri­sel­lä voi­ma­har­joit­te­lul­la voi­daan vai­kut­taa lihak­sen jän­ni­tys-pituus­suh­tee­seen, eli sii­hen, mil­lä lihak­sen­pi­tuu­del­la tai nive­len kul­mal­la tuo­te­taan isoin mah­dol­li­nen voi­ma. Tämä on eri­tyi­sen tär­keä urhei­lus­sa, jos­sa halu­taan mak­si­moi­da suu­rin mah­dol­li­nen tuo­tet­tu voi­ma halu­tus­sa asen­nos­sa. Myös paras­ta voi­man­tuot­to­kul­maa voi­daan muo­ka­ta iso­met­ri­sel­lä har­joit­te­lul­la. Esi­mer­kik­si Alegre ja kump­pa­nit (25) rapor­toi­vat, että pidem­mäl­lä lihas­pi­tuu­del­la har­joit­te­lu kah­dek­san vii­kon ajan joh­ti 11 asteen muu­tok­seen koh­ti pidem­piä lihas­pi­tuuk­sia, kun taas lyhyem­mil­lä kul­mil­la har­joit­te­lu joh­ti 5,3 astet­ta opti­maa­lis­ta kul­maa toi­seen suun­taan. Myös Bog­da­nis ja kump­pa­nit (26) huo­ma­si­vat noin 10 % tipu­tuk­sen opti­maa­li­ses­sa kul­mas­sa lyhyil­lä lii­ke­ra­doil­la harjoitellessa. 

Lihak­sen säh­köi­nen aktii­vi­suus (EMG) lisään­tyy pit­kil­lä lihas­pi­tuuk­sil­la enem­män ver­rat­tu­na lyhyi­siin lihas­pi­tuuk­siin (2 & 20). Pidem­pi lihas­pi­tuus näyt­täi­si lisää­vän myös liha­sak­tii­vi­suut­ta laa­jem­mal­la alu­eel­la, kun lyhyel­lä lihas­pi­tuu­del­la har­joi­tel­les­sa muu­tok­set näyt­täi­si­vät ole­van hyvin spe­si­fe­jä (21 & 22). Koko­nai­suu­des­saan pit­kät lihas­pi­tuu­det näyt­tä­vät jäl­leen ole­van tehok­kaam­pi vaih­toeh­to ver­rat­tu­na lyhyem­piin lihaspituuksiin. 

Pidem­pi­kes­toi­nen supis­tus näyt­täi­si ole­van jois­sa­kin tapauk­sis­sa tehok­kaam­pi tapa paran­taa voi­maa ja myös dynaa­mis­ta urhei­lun suo­ri­tus­ky­kyä (hyp­pää­mis­tä ja juok­se­mis­ta) ver­rat­tu­na nope­aan iso­met­ri­seen voi­man­tuot­to­ta­paan (40). Pidem­mäs­sä supis­tuk­ses­sa teh­tiin kol­men sekun­nin ajan työ­tä ja räjäh­tä­väs­sä nopeas­sa iso­met­ri­ses­sä voi­man­tuot­to­ta­vas­sa teh­tiin yhden sekun­nin ver­ran töi­tä. Tulok­sia on tul­kit­ta­va hie­man varo­vas­ti, sil­lä pidem­pää supis­tus­ta teh­nyt ryh­mä teki yhteen­sä 15 sekun­nin ver­ran työ­tä sar­jas­sa, kun lyhyem­pää pät­kää teh­nyt ryh­mä teki vain 10 sekun­nin ver­ran työ­tä. Kuu­den vii­kon aika­na ja 12 har­joi­tus­ker­ran vuok­si erot ker­taan­tu­vat ja teh­ty koko­nais­työ oli huo­mat­ta­vas­ti isom­pi kol­men sekun­nin ryh­mäs­sä ver­rat­tu­na yhden sekun­nin ryh­mään. Tämä var­mas­ti osal­taan selit­tää tuloksia. 

Kol­men sekun­nin ryh­mä paran­si esi­ke­ven­net­tyä hyp­pyä 12,1 % ja yhden sekun­nin ryh­mä 10,8 %. Erot kas­va­neis­ta voi­ma­ta­sois­sa­kin voi­vat selit­tää nämä muu­tok­set. Mie­len­kiin­toi­ses­ti pidem­pi­kes­toi­nen iso­met­ri­nen voi­ma­har­joit­te­lu aiheut­ti 1,4 % paran­nuk­sen 30 met­rin juok­suai­kaan. Täs­sä­kin tapauk­ses­sa enem­män har­joi­tel­lut ryh­mä paran­si huo­mat­ta­vas­ti enem­män nopeut­taan, kun vähem­män har­joi­tel­lut ryh­mä. Voi­si­ko kas­va­neet voi­ma­ta­sot, ei niin­kään nopeus, selit­tää erot. Nor­maa­lil­la koval­la kyy­kyl­lä ja ply­omet­ri­sel­lä har­joit­te­lul­la on saa­tu 1,2 % paran­nus 30 met­rin juok­suai­kaan (43), joka on aika lähel­lä tämän tut­ki­muk­sen saa­mia tuloksia. 

Toi­saal­ta täs­sä­kin tut­ki­muk­ses­sa huo­mat­tiin, että kyky tuot­taa voi­maa nopeam­min para­ni yhden sekun­nin ryh­mäl­lä enem­män kuin kol­men sekun­nin ryh­mäl­lä, kun taas pidem­pi­kes­toi­ses­sa supis­tuk­ses­sa mak­si­mi­voi­ma kehit­tyi enem­män. Myös muut ovat rapor­toi­neet saman­kal­tai­sia tulok­sia (41 & 42). 

Yhteenveto

Iso­met­ris­tä har­joit­te­lua voi hyö­dyn­tää posi­tii­vis­ten her­mo­li­has­jär­jes­tel­män adap­taa­tioi­den saa­vut­ta­mi­sek­si ilman lii­al­lis­ta väsy­mys­tä. Tämä on eri­tyi­sen tär­ke­ää eri­tyi­ses­ti urhei­li­joil­la kil­pai­lu­kau­den aika­na. Lisäk­si jos tiet­tyä voi­man­tuot­to­kul­maa tai lajin vaa­ti­mia kul­mia pitää har­joi­tel­la, niin iso­met­ri­nen har­joit­te­lu on erit­täin teho­kas työ­ka­lu niihin. 

Iso­met­ri­nen har­joit­te­luun pätee samat lai­na­lai­suu­det kuin muu­hun­kin har­joit­te­luun. Hypert­ro­fi­aa saa­vut­taak­se­si tulee har­joit­te­lua teh­dä 70-75% inten­si­tee­til­lä mak­si­maa­li­ses­ta supis­tuk­ses­ta noin 3-30s ajan tois­tos­sa ja sar­ja­mää­rän olles­sa > 80 – 150s per yksi har­joi­tus­ker­ta. Mak­si­mi­voi­maa saa­vut­taak­se­si iso­met­ris­tä har­joit­te­lua tulee teh­dä 80-100% mak­si­maa­li­ses­ta supis­tuk­ses­ta 1-5s ajan ja koko­nais­kes­ton olles­sa 30-90s. Voi­man­tuot­to­no­peut­ta paran­taak­seen tulee suo­ri­tuk­ses­sa pyr­kiä tuot­ta­maan mah­dol­li­sim­man nopeas­ti mah­dol­li­sim­man pal­jon voi­maa. Sar­jan kes­ton tulee olla lyhyt. Kuvas­sa 3 on koot­tu tämän­het­ki­seen tut­ki­mus­näyt­töön perus­tuen ohjeis­tus iso­met­ri­seen voimaharjoitteluun.

KUVA 3: Tämän­het­ki­ses­tä tuki­mus­näy­tös­tä koos­tet­tu tau­luk­ko miten iso­met­ris­tä har­joit­te­lua tuli­si teh­dä, jos halu­aa saa­vut­taa tie­tyn adaptaation.

Tii­vis­tys

  • Lihas­ta­kin voin kas­vat­taa pel­käl­lä iso­met­ri­sel­lä har­joit­te­lul­la. Volyy­mi ja lihas­pi­tuus ovat tär­keim­mät muut­tu­jat, kun tavoit­tee­na on lihaskasvu. 
  • Iso­met­ri­ses­sä har­joit­te­lus­sa pit­kil­lä lihas­pi­tuuk­sil­la suo­ri­te­tul­la har­joit­te­lul­la on ylei­ses­ti enem­män etu­ja ver­rat­tu­na lyhyil­lä lihas­pi­tuuk­sil­la suo­ri­tet­tuun harjoitteluun. 
  • Suu­rim­mat muu­tok­set tapah­tu­vat har­joi­tel­luil­la kul­mil­la, joten har­joit­te­le sitä kul­maa mitä haluat kehittää.
  • Iso­met­ri­sel­lä har­joit­te­lu voi­daan vai­kut­taa lihak­sen jännitys-pituussuhteeseen.
  • Iso­met­ri­ses­sä har­joit­te­lus­sa inten­si­teet­ti on pää­muut­tu­ja voi­man koh­dal­la. Hypert­ro­fian koh­dal­la volyymi. 
  • Bal­lis­ti­sel­la pro­to­ko­la on yli­voi­mai­nen räjäh­tä­vän voi­man kehit­ty­mi­seen. Ensim­mäi­sel­le 50 ja 100 ms voi paran­taa voi­man­tuot­toa huo­mat­ta­vas­ti. Jos tämä on tavoi­te, niin har­joit­teet tuli­si teh­dä mah­dol­li­sim­man nopeas­ti ja mah­dol­li­sim­man voimakkaasti. 

Lähteet:

  1. Alegre LM, Ferri-Morales A, Rodriguez-Casares R, Agua­do X. Effects of iso­met­ric trai­ning on the knee exten­sor moment–angle rela­tions­hip and vas­tus late­ra­lis muscle arc­hi­tec­tu­re. Eur J Appl Phy­siol. 2014;114(11):2437-2446.
  2. Kubo K, Ohgo K, Takeis­hi R, et al. Effects of iso­met­ric trai­ning­mat dif­fe­rent knee angles on the muscle–tendon complex in vivo. Scand J Med Sci Sports. 2006;16(3):159-167.
  3. Noor­koiv M, Nosa­ka K, Blaze­vich AJ. Neu­ro­muscu­lar adap­ta­tions associa­ted with knee joint angle-specific force chan­ge. Med Sci Sports Exerc. 2014;46(8):1525-1537.
  4. Guex K, Degac­he F, Mori­sod C, Sail­ly M, Mil­let GP. Ham­string arc­hi­tec­tu­ral and func­tio­nal adap­ta­tions fol­lowing long vs. short muscle length eccent­ric trai­ning. Front Phy­siol. 2016;7(340):1-9.
  5. Barak Y, Ayalon M, Dvir Z. Trans­fe­ra­bi­li­ty of strength gains from limi­ted to full ran­ge of motion. Med Sci Sports Exerc. 2004;36(8):1413-1420.
  6. Mas­sey CD, Vincent J, Mane­val M, Moo­re M, John­son JT. An ana­ly­sis of full ran­ge of motion vs. par­tial ran­ge of motion trai­ning in the deve­lop­ment of strength in unt­rai­ned men. J Strength Cond Res. 2004;18(3):518-521.
  7. Allen TJ, Jones T, Tsay A, Mor­gan DL, Pros­ke U. Muscle dama­ge pro­duced by iso­met­ric cont­rac­tions in human elbow flexors. J Appl Phy­siol. 2018;124(2):388-399.
  8. de Rui­ter CJ, de Boer MD, Span­jaard M, de Haan A. Knee angle-dependent oxy­gen con­sump­tion during iso­met­ric cont­rac­tions of the knee exten­sors deter­mi­ned with near-infrared spect­rosco­py. J Appl Phy­siol. 2005;99:579-586.
  9. Dan­kel SJ, Mat­tocks KT, Jes­see MB, Buck­ner SL, Mouser JG, Loen­ne­ke JP. Do meta­bo­li­tes that are pro­duced during resis­tance exerci­se enhance muscle hypert­rop­hy? Eur J Appl Phy­siol. 2017;117(11):2125-2135.
  10. Meyers CR. Effects of two iso­met­ric rou­ti­nes on strength, size, and endu­rance in exerci­sed and nonexerci­sed arms. Res Q Exerc Sport. 1967;38(3):430-440
  11. Bals­haw TG, Mas­sey GJ, Maden-Wilkinson TM, Til­lin NA, Fol­land JP. Training-specific func­tio­nal, neu­ral, and hypert­rop­hic adap­ta­tions to explosive- vs. sustained-contraction strength trai­ning. J Appl Phy­siol. 2016;120(11):1364-1373.
  12. Schott J, McCul­ly K, Rut­her­ford OM. The role of meta­bo­li­tes in strength trai­ning: short ver­sus long iso­met­ric cont­rac­tions. Eur J Appl Phy­siol Occup Phy­siol. 1995;71(4):337-341.
  13. Kongs­gaard M, Aagaard P, Kjaer M, Mag­nus­son SP. Struc­tu­ral Achil­les ten­don pro­per­ties in ath­le­tes sub­jec­ted to dif­fe­rent exerci­se modes and in Achil­les ten­don rup­tu­re patients. J Appl Phy­siol (1985). 2005 Nov;99(5):1965-71. doi: 10.1152/japplphysiol.00384.2005. Epub 2005 Aug 4. PMID: 16081623.
  14. Aram­patzis A, Kara­ma­ni­dis K, Albracht K. Adap­ta­tio­nal res­pon­ses of the human Achil­les ten­don by modu­la­tion of the applied cyclic strain mag­ni­tu­de. J Exp Biol. 2007;210:2743-2753. 
  15. Aram­patzis A, Peper A, Bier­baum S, Albracht K. Plas­tici­ty of human Achil­les ten­don mec­ha­nical and morp­ho­lo­gical pro­per­ties in res­pon­se to cyclic strain. J Bio­mech. 2010;43(16):3073-3079.
  16. Bur­gess KE, Con­nik MJ, Graham-Smith P, Pear­son SJ. Ply­omet­ric vs iso­met­ric trai­ning influences on ten­don pro­per­tied and muscle out­put. J Strength Cond Res. 2007;21(3):986-989. 
  17. Kubo K, Kane­hi­sa H, Fuku­na­ga T. Effects of dif­fe­rent dura­tion iso­met­ric cont­rac­tions on ten­don elas­tici­ty in human quadriceps muscles. J Phy­siol. 2001;536(2):649-655.
  18. Kubo K, Ishi­ga­ki T, Ike­bu­ku­ro T. Effects of ply­omet­ric and iso­met­ric trai­ning on muscle and ten­don stiff­ness in vivo. Phy­siol Rep. 2017;5(e13374):1-13
  19. Mas­sey G, Bals­haw T, Maden-Wilkinson T, Til­lin N, Fol­land J. Ten­di­nous tis­sue adap­ta­tion to explosive- vs. sustained-contraction strength trai­ning. Front Phy­siol. 2018;9(1170):1–17.
  20. Ban­dy WD, Han­ten WP. Chan­ges in torque and elect­ro­my­ograp­hic acti­vi­ty of the quadriceps femo­ris muscles fol­lowing iso­met­ric trai­ning. Phys Ther. 1993;73(7):455-465.
  21. Barak Y, Ayalon M, Dvir Z. Trans­fe­ra­bi­li­ty of strength gains from limi­ted to full ran­ge of motion. Med Sci Sports Exerc. 2004;36(8):1413-1420. 
  22. Mas­sey CD, Vincent J, Mane­val M, Moo­re M, John­son JT. An ana­ly­sis of full ran­ge of motion vs. par­tial ran­ge of motion trai­ning in the deve­lop­ment of strength in unt­rai­ned men. J Strength Cond Res. 2004;18(3):518-521.
  23. Til­lin NA, Fol­land JP. Maxi­mal and explo­si­ve strength trai­ning elicit dis­tinct neu­ro­muscu­lar adap­ta­tions, speci­fic to the trai­ning sti­mu­lus. Eur J Appl Phy­siol. 2014;114(2):365-374. 
  24. Maf­fiu­let­ti NA, Mar­tin A. Progres­si­ve ver­sus rapid rate of cont­rac­tion during 7 wk of iso­met­ric resis­tance trai­ning. Med Sci Sports Exerc. 2001;33(7):1220-1227
  25. Alegre LM, Ferri-Morales A, Rodriguez-Casares R, Agua­do X. Effects of iso­met­ric trai­ning on the knee exten­sor moment– angle rela­tions­hip and vas­tus late­ra­lis muscle arc­hi­tec­tu­re. Eur J Appl Phy­siol. 2014;114(11):2437-2446.
  26. Bog­da­nis GC, Tsou­kos A, Met­he­ni­tis SK, Seli­ma E, Veli­ge­kas P, Terzis G. Effects of low volu­me iso­met­ric leg press complex trai­ning at two knee angles on force-angle rela­tions­hip and rate of force deve­lop­ment. Eur J Sport Sci. 2018;1-9. https://doi.org /10.1080/17461391.2018.1510989. [Epub ahead of print].
  27. Behm DG, Sale DG. Inten­ded rat­her than actual move­ment veloci­ty deter­mi­nes velocity-specific trai­ning res­pon­se. J Appl Phy­siol. 1993;74(1):359-368.
  28. Bals­haw T, Mas­sey GJ, Maden-Wil­kin­son TM, Til­lin NA, Fol­land JP. Trai­ning-speci­fic func­tio­nal, neu­ral, and hypert­rop­hic adap­ta­tions to explo­si­ve- vs. sus­tai­ned-cont­rac­tion strength trai­ning. J Appl Phy­siol (1985) 2016; 120: 1364–1373
  29. Davies J, Par­ker DF, Rut­her­ford OM, Jones DA. Chan­ges in strengh and cross sec­tio­nal area of the elbow flexors as a result of iso­met­ric strength trai­ning. Eur J Appl Phy­siol 1988; 57: 667–670
  30. Gar­fin­kel S, Cafa­rel­li E. Rela­ti­ve chan­ges in maxi­mal force, EMG, and muscle cross-sec­tio­nal area after iso­met­ric trai­ning. Med Sci Sports Exerc 1992; 24: 1220–1227
  31. Ikai M, Fuku­na­ga T. A stu­dy on trai­ning effect on strength per unit corss-sec­tio­nal area of muscle by means of ult­ra­so­nic mea­su­re­ment. Eur J Appl Phy­siol 1970; 28: 173–180
  32. Jones DA, Rut­her­ford OM. Human muscle strength trai­ning: The effects of three dif­fe­rent regi­mes and the natu­re of the resul­tant chan­ges. J Phy­siol 1987; 391: 1–11
  33. Kane­hi­sa H, Naga­re­da H, Kawa­ka­mi Y, Aki­ma H, Masa­ni K, Kouza­ki M, Fuku­na­ga T. Effects of equi­vo­lu­me iso­met­ric trai­ning pro­grams compri­sing medium or high resis­tance on muscle size and strength. Eur J Appl Phy­siol 2002; 87: 112–119
  34. Kubo K, Ohgo K, Takes­hi R, Yos­hi­na­ga K, Tsu­no­da N, Kane­hi­sa H, Fuku­na­ga T. Effects of iso­met­ric trai­ning at dif­fe­rent knee angles on the muscle-ten­don complex in vivo. Scand J Med Sci Sports 2006; 16: 159–167
  35. Noor­koiv M, Nosa­ka K, Blaze­vich AJ. Neu­ro­muscu­lar adap­ta­tions associa­ted with knee joint angle-speci­fic force chan­ge. Med Sci Sports Exerc 2014; 46: 1525–1537 
  36. Noor­koiv M, Nosa­ka K, Blaze­vich AJ. Effects of iso­met­ric quadriceps strength trai­ning at dif­fe­rent muscle lengths on dyna­mic torque pro­duc­tion. J Sports Sci 2015; 33: 1952–1961
  37. Schott J, McCul­ly K, Rut­her­ford OM. The role of meta­bo­li­tes in strength trai­ning II. Short vs. long iso­met­ric cont­rac­tions. Eur J Appl Phy­siol 1995; 71: 337–341
  38. Abe, Takas­hi, Kuma­gai, Kenya, Brec­hue, Wil­liam F. Fascicle length of leg muscles is grea­ter in sprin­ters than dis­tance run­ners, Medici­ne & Science in Sports & Exerci­se: June 2000; 32(6): 1125-1129.
  39. Kuma­gai K, Abe T, Brec­hue WF, Ryus­hi T, Taka­no S, Mizu­no M. Sprint per­for­mance is rela­ted to muscle fascicle length in male 100-m sprin­ters. J Appl Phy­siol (1985). 2000 Mar;88(3):811-6. doi: 10.1152/jappl.2000.88.3.811. PMID: 10710372.
  40. Lum, D., Bar­bo­sa, T.M., Joseph, R. et al. Effects of Two Iso­met­ric Strength Trai­ning Met­hods on Jump and Sprint Per­for­mances: A Ran­do­mized Cont­rol­led Trial. J. of SCI. IN SPORT AND EXERCI­SE 3, 115–124 (2021). https://doi.org/10.1007/s42978-020-00095-w
  41. Bals­haw T, Mas­sey GJ, Maden-Wil­kin­son TM, Til­lin NA, Fol­land JP. Trai­ning-specifc func­tio­nal, neu­ral, and hypert­rop­hic adap­ta­tions to explo­si­ve- vs. sus­tai­ned-cont­rac­tion strength trai­ning. J Appl Phy­siol. 2016;120(11):1364–73
  42. Til­lin NA, Fol­land JP. Maxi­mal and explo­si­ve strength trai­ning elicit dis­tinct neu­ro­muscu­lar adap­ta­tions, specifc to the trai­ning sti­mu­lus. Eur J Appl Phy­siol. 2014;114(2):365–74.
  43. Ron­nes­tad BR, Kvam­me NH, Sun­de A, Raas­tad T. Short-term efects of strength and ply­omet­ric trai­ning on sprint and jump per­for­mance in pro­fes­sio­nal soccer players. J Strength Cond Res. 2008;22(3):773–80
  44. Behm DG, Sale DG (1993) Inten­ded rat­her than actual move­ment veloci­ty deter­mi­nes veloci­ty-speci­fic trai­ning res­pon­se. Jour­nal of Applied Phy­sio­lo­gy 74(1):359–68.
  45. Maf­fiu­let­ti NA, Mar­tin A (2001) Progres­si­ve ver­sus rapid rate of cont­rac­tion during 7 wk of iso­met­ric resis­tance trai­ning. Medici­ne and Science in Sports and Exerci­se 33(7):1220–27.
  46. Olsen PD, Hop­kins WG (2003) The effect of attemp­ted bal­lis­tic trai­ning on the force and speed of move­ments. Jour­nal of Strength and Con­di­tio­ning Research 17(2):291–98.
  47. Vii­ta­sa­lo JT, Komi PV (1981) Effects of fati­gue on iso­met­ric force- and relaxa­tion-time cha­rac­te­ris­tics in human muscle. Acta Phy­sio­lo­gica Scan­da­vica 111(1):87–95.
  48. Oranc­huk DJ, Sto­rey AG, Nel­son AR, Cro­nin JB. Iso­met­ric trai­ning and long-term adap­ta­tions: Effects of muscle length, inten­si­ty, and intent: A sys­te­ma­tic review. Scand J Med Sci Sports. 2019 Apr;29(4):484-503. doi: 10.1111/sms.13375. Epub 2019 Jan 13. PMID: 30580468.
Lihasten koon ja voiman ylläpito ja kehittäminen ilman kuntosalia - Vieraskirjoitus

Lihasten koon ja voiman ylläpito ja kehittäminen ilman kuntosalia - Vieraskirjoitus

Käy luke­mas­sa vie­ras­kir­joi­tus Lihas­toh­to­rin blo­gis­ta miten lihas­ten kokoa ja voi­maa voi yllä­pi­tää sekä kehit­tää ilman pää­syä kun­to­sa­lil­le. Vii­me vii­kon har­joit­te­lu­tau­ko kir­joi­tuk­sen jat­kok­si jul­kais­tu käy­tän­nön osuus on nyt ulko­na ja tar­jo­aa pal­jon käy­tän­nön vink­ke­jä kuvien ja videoi­den muodossa. 

Artik­ke­lin yhteenveto:

  • Täl­lä het­kel­lä ei kan­na­ta kes­kit­tyä sii­hen mitä kaik­kea ei pys­ty teke­mään, vaan sen sijaan mitä pys­tyy tekemään.
  • Nyt tämä tilan­ne pakot­taa­kin monet moni­puo­lis­ta­maan har­joit­te­lua ja antaa mah­dol­li­suu­den oppia pal­jon uusia liik­kei­tä ja tapo­ja harjoitella.
  • Ilman kun­to­sa­lin lait­tei­ta ja väli­nei­tä voi har­joi­tel­la ja vähin­tään­kin yllä­pi­tää saa­vu­tet­tu­ja voi­ma- ja lihasmassatasoja.
  • Kehit­tä­vää tai vähin­tään­kin yllä­pi­tä­vää har­joit­te­lua voi teh­dä omal­la kehon­pai­nol­la yksin tai parin kans­sa ja tar­vit­taes­sa eri­lai­sia yksin­ker­tai­sia väli­nei­tä käyttäen.
  • Vas­tus­tus­ky­vyn kan­nal­ta oli­si hyvä, jos har­joit­te­lu ei oli­si inten­si­tee­til­tään ja mää­räl­tään kehoa tois­tu­vas­ti ääri­ra­joil­le vie­vää nykyi­ses­sä epidemiassa.
Harjoittelutauon vaikutus lihasten kokoon ja voimantuottoon - Vieraskirjoitus

Harjoittelutauon vaikutus lihasten kokoon ja voimantuottoon - Vieraskirjoitus

Käy luke­mas­sa vie­ras­kir­joi­tus Lihas­toh­to­rin blo­gis­ta har­joit­te­le­mat­to­muus­jak­son vai­ku­tuk­ses­ta lihak­sen kokoon ja voimaan. 

Artik­ke­lin yhteenveto:

  • Alle nel­jän vii­kon har­joit­te­le­mat­to­muus­jak­so ei vai­ku­ta voi­ma­ta­soi­hin juu­ri ollen­kaan var­sin­kin koke­neem­mil­la ja van­hem­mil­la tree­naa­jil­la. Tämän jäl­keen voi­ma alkaa vähi­tel­len vähenemään.
  • Lihak­set alka­vat hil­jal­leen sur­kas­tua noin kol­men vii­kon tree­ni­tauon jälkeen.
  • Tree­ni­tau­ko saat­taa lii­oi­tel­la lihas­ten pie­nen­ty­mis­tä. Älä säi­käh­dä sitä, sil­lä tämä joh­tuu osit­tain lihas­ten gly­ko­gee­ni­va­ras­to­jen pie­nen­ty­mi­ses­tä ja vii­mei­sen tree­nin aiheut­ta­man pie­nen lihas­tur­vo­tuk­sen katoa­mi­ses­ta, ei ”oikean” lihas­mas­san häviä­mi­ses­tä. Tämä vai­ku­tus on väliai­kai­nen, ja jo pie­ni­kin har­joit­te­lu palaut­taa gly­ko­gee­ni­ta­sot lihaksessa.
  • Pidem­män har­joit­te­le­mat­to­muus­jak­son jäl­keen jäl­leen aloi­tet­tu har­joit­te­lu palaut­taa mene­te­tyn lihas­mas­san ja voi­man takai­sin hyvin nopeas­ti ”lihas­muis­tin” ansiosta.
Lihahypertrofia osa 4/4: Yksilölliset vasteet voimaharjoitteluun ja harjoittelun periodisaatio

Lihahypertrofia osa 4/4: Yksilölliset vasteet voimaharjoitteluun ja harjoittelun periodisaatio

Lihas­kas­vua käsit­te­le­vä artik­ke­li­sar­ja lähe­nee lop­pua ja on vii­mei­sen osan vuo­ro. Täs­sä artik­ke­lis­sa käsi­tel­lään miten eri yksi­löt adap­toi­tu­vat voi­ma­har­joit­te­luun ja miten har­joit­te­lu kan­nat­tai­si ohjel­moi­da, jot­ta kehi­tys oli­si kaik­kein optimaalisinta.

Genetiikan vaikutus lihaskasvuun

Gee­nit vai­kut­ta­vat suu­res­ti hen­ki­lön kehit­ty­mi­seen. Teo­reet­ti­ses­ti voi­daan aja­tel­la mak­si­maa­li­sen lihas­kas­vun rajo­jen ole­van ole­mas­sa. Nämä mää­rit­ty­vät geno­tyy­pin, eli geneet­ti­sen infor­maa­tion, ja näi­den gee­nien ilmen­ty­mi­sen yksi­lös­sä mukaan. Gee­nit aset­ta­vat teo­reet­ti­ses­ti meil­le tie­tyt reu­naeh­dot, miten rea­goim­me eri­lai­siin tilan­tei­siin. Gee­nien takia jot­kut yksi­löt kehit­ty­vät nopeam­min ja jot­kut yksi­löt hitaam­min. Kuiin­ka pal­jon vaih­te­lua voi sit­ten eri hen­ki­löi­den välil­lä olla?

KUVA 1: Tar­kis­tus­lis­ta, jos epäi­let sali­mar­kun tai sali­jon­nan käyt­tä­vän kehon ulko­puo­li­sia hormoneita. 

Yksi­löl­li­set vas­teet har­joit­te­luun vaih­te­le­vat hur­jas­ti ihmi­sil­lä. Tämä tar­koit­taa sitä, että jos kak­si samaa ihmis­tä tekee täy­sin saman ohjel­man niin tus­kin kos­kaan he kehit­ty­vät täs­mäl­leen saman ver­ran. Esi­mer­kik­si saman­lai­sel­la har­joit­te­lul­la lihak­sen kas­vu voi vaih­del­la jopa -11 % - + 30 % välil­lä ja voi­ma taas - 8 % - + 60 % välil­lä (Ahtiai­nen et al., 2016). Ei-res­pon­doi­via ihmi­siä, eli nii­tä, jot­ka eivät rea­goi miten­kään tut­ki­mus­ten voi­ma­har­joit­te­luun on kes­ki­mää­rin 25% koe­hen­ki­löis­tä (Bam­man et al., 2007). Toi­saal­ta nyky­ään aja­tel­laan, että eri­lai­nen har­joit­te­lu, ravin­to, lepo tai joku muu muut­tu­ja oli­si voi­nut vai­kut­taa yksi­löl­li­siin vas­tei­siin. Eli täl­läi­set ei-res­pon­doi­vat koe­hen­ki­löt joh­tu­vat pää­osin huo­nos­ta tut­ki­mus­a­se­tel­mas­ta, elä­män­ti­lan­tees­ta tai muus­ta teki­jäs­tä, mikä estää kehi­tyk­sen. Jot­kut ei-res­pon­doi­vis­ta ihmi­sis­tä tar­vit­se­vat vain enem­män ja pidem­pää har­joit­te­lua ver­rat­tu­na toisiin. 

KUVA 2: Oikeas­sa kaa­vios­sa näh­dään, että lähes kaik­ki koe­hen­ki­löt sai­vat erään tut­ki­muk­sen aika­na lisää voi­maa, mut­ta vasem­mal­la huo­ma­taan, että joi­den­kin koe­hen­ki­löi­den lihas­ko­ko jopa pie­ne­ni tut­ki­muk­sen aika­na. (Churward-Ven­ne et al., 2015).

Mikä näi­tä ero­ja sit­ten selit­tää?  Pesca­tel­lo ja kum­ma­nit (2013) pys­tyi­vät tun­nis­ta­maan 17 gee­niä, joi­den usko­taan selit­tä­vän osan hen­ki­löi­den väli­sis­tä erois­ta. Näis­tä tär­keim­pä­nä hypert­ro­fian kan­nal­ta pide­tään täl­lä het­kel­lä BMP2-gee­niä (Deva­ney et al., 2009). Ja myös MGF:ää pide­tään erit­täin tär­keä­nä (Bam­man et al., 2007). 

Lisäk­si satel­liit­ti­so­lut lisään­ty­vät ja luo­vut­ta­vat tumia tehok­kaam­min hyvin res­pon­doi­tu­vil­la ihmi­sil­lä kuin ver­ra­taan ei-res­pon­doi­tu­viin ihmi­siin (Pet­rel­la et al., 2008). Myös lihak­sen mor­fo­lo­gia vai­kut­taa suu­res­ti lihas­kas­vuun. Mitä enem­män lihas­so­lu­ja hen­ki­löl­lä on, niin sen hel­pom­min lihas kas­vaa. Lihas­so­lu­jen mää­rä on aika vakio ja hyperpla­si­aa (lihas­so­lu­jen lisään­ty­mis­tä) ei tapah­du enää 24 vii­kon jäl­keen syn­ty­mäs­tä. Lihas­so­lu­jen mää­rä onkin pit­käl­ti gee­nien määrittämä.

Jos ver­tail­laan mies­ke­hon­ra­ken­ta­jia ja taval­li­sia kadun tal­laa­jia niin kehon­ra­ken­ta­jil­la on enem­män lihas­so­lu­ja hauik­sis­sa ja nämä solut oli­vat myös isom­pia ver­rat­tu­na taval­li­siin tal­laa­jiin (Mac­Dou­gall et al., 1984). Joten niil­lä, jot­ka pää­tyi­vät kehon­ra­ken­ta­jik­si oli jo enem­män lihas­so­lu­ja kuin muil­la nor­maa­leil­la ihmi­sil­lä. Tämä on yksi syy, mik­si kehon­ra­ken­ta­jat rea­goi­vat parem­min voimaharjoitteluun. 

Nopei­den lihas­so­lu­jen mää­rä kas­va­tet­ta­vas­sa lihak­ses­sa on tär­keä teki­jä sen suh­teen miten voi­ma­har­joit­te­lu vai­kut­taa lihak­seen. Tyy­pin II - lihas­so­lut kas­va­vat noin 50% enem­män ver­rat­tua tyy­pin I -lihas­so­lui­hin. Toi­saal­ta täs­sä­kin suh­tees­sa on hur­jas­ti hen­ki­löi­den välis­tä vaih­te­lua (Kosek et al., 2006). Tut­ki­muk­sia, jot­ka selit­tä­vät fysio­lo­gi­sia meka­nis­me­ja yksi­löl­li­ses­sä voi­ma­har­joit­te­lus­sa on saa­ta­vil­la erit­täin niu­kas­ti, mut­ta erot joh­tu­vat ylei­ses­ti peri­mäs­tä, gee­nien ilme­ne­mi­ses­sä, solu­vies­tin­näs­sä, hor­mo­ni­re­sep­to­rei­den toi­min­nas­sa ja satel­liit­ti­so­luis­sa. Nos­tan vie­lä esil­le ravit­se­muk­sen, jota har­voin tut­ki­muk­sis­sa kont­rol­loi­daan ja sil­lä on val­ta­va mer­ki­tys lihas­kas­vun mahdollistamisessa.

KUVA 3: Näyt­täi­si myös sil­tä, että hyvin voi­ma­har­joit­te­luun rea­goi­vat ihmi­set saa­vat itses­tään irti pal­jon har­joi­tuk­sen aika­na. Heil­lä har­joi­tuk­sen jäl­keen voi­ma las­kee enem­män kuin huo­nos­ti res­pon­doi­tu­vil­la ihmi­sil­lä. Tämä tar­koit­taa sitä, että he ovat saa­neet enem­män väsy­mys­tä aikai­sek­si har­joi­tuk­sen aikana.

Gene­tii­kal­la on siis kiel­tä­mät­tä iso roo­li hen­ki­lön lihas­kas­vus­sa. Voit kiit­tää van­hem­pia­si näis­tä lah­jois­ta, mut­ta muu­ten asi­aan ei kan­na­ta kiin­nit­tää sen enem­pää huo­mio­ta. Jokai­nen voi ja pys­tyy kehit­ty­mään, vaik­ka tut­ki­muk­sis­sa usein löy­de­tään ei-res­pon­toi­via hen­ki­löi­tä har­joit­te­luun niin tähän saat­taa olla syy­nä vää­rän­lai­nen tut­ki­muk­se­na­set­te­lu, har­joit­te­lu tai ohjel­moin­ti. Yksi­löl­li­nen har­joit­te­lu ja ohjel­ma mah­dol­lis­ta­vat jokai­sen kehit­ty­mi­sen. Hei­kos­ti res­pon­doi­vien pitää jos­kus ree­na­ta jopa pal­jon vähem­män ja har­vem­min kehit­tyäk­seen. Tai kevyem­mil­lä kuor­mil­la. Myös har­joi­tus­taus­ta vai­kut­taa suu­res­ti hen­ki­lön kykyyn adap­toi­tua. Aloit­te­le­vil­la ihmi­sil­lä lihas­kas­vu voi olla jopa 28% ja kor­keim­mil­laan 58% 16 vii­kos­sa (Stewart & Rittwe­ger, 2006), kun taas kehon­ra­ken­ta­jat kehit­tyi­vät vii­des­sä kuu­kau­des­sa “vain” 3-7% (Alway et al., 1992). Ohjel­moin­ti ja ohjel­man muut­tu­jien mani­pu­loin­ti koros­tuu eri­tyi­ses­ti, kun har­joi­tus­taus­taa ker­tyy enem­män. Keven­ne­tyt jak­sot voi­vat aut­taa taas res­pon­toi­maan parem­min sti­mu­luk­seen (Oga­sawa­ra et al., 2013). 

Ei-res­pon­de­reil­la ei siis ole mie­len­vi­ka pää­sään vaan se on ihan oikea asia. Hei­dän tulee eri­tyi­ses­ti kes­kit­tyä ravin­toon ja oikean­lai­seen har­joit­te­luun. Huo­nos­ti res­pon­doi­vat saat­ta­vat olla vain hitaam­min res­pon­doi­via ja tar­vit­se­vat enem­män har­joi­tus­vo­lyy­mia kehit­tyäk­seen. Nimi on vähän har­haan­joh­ta­va sil­lä jokai­nen kehit­tyy oikean­lai­sel­la har­joit­te­lul­la. Saa­tat vain olla hei­kom­min ja hitaam­min res­pon­doi­tu­va hen­ki­lö ver­rat­tu­na sali­ka­ve­rii­si. Lisäk­si vie­lä useis­sa tut­ki­muk­sis­sa kehi­tys on 12 vii­kos­sa esim. non res­pon­de­reil­la “vain” 5%. Tämä tulos luo­ki­tel­laan tut­ki­muk­sis­sa hitaas­ti reas­pon­doi­vak­si, mut­ta jos kehi­tys jat­kui­si koko vuo­den ver­ran saman­lai­se­na se vas­tai­si alle vuo­des­sa esi­mer­kik­si 100kg pen­kis­sä siir­ty­mis­tä 121,6 kiloon. Kuin­ka moni oli­si tyy­ty­väi­nen tuo­hon kehi­tyk­seen vuo­des­sa? Minä aina­kin oli­sin. Joten nimi on hiu­kan har­haan­joh­ta­va ja ylei­ses­ti ongel­mat joh­tu­vat tut­ki­mus­a­se­tel­mas­ta, sekä hete­ro­gee­ni­ses­tä tut­ki­mus­jou­kos­ta.

Periodisaatio lihaskasvussa

Perio­di­saa­tio­ta on tut­kit­tu antii­kin ajois­ta saak­ka. Mut­ta 1950-luvul­la Neu­vos­to­lii­tos­sa kes­ki­tyt­tiin eri­tyi­ses­ti perio­di­saa­tion tut­ki­mi­seen. Tuol­loin kehi­tel­ty super­kom­pen­saa­tio­aja­tus antoi perus­tan nykyi­sel­le perio­di­saa­tiol­le. Tuol­loin kehi­tet­tiin perin­tei­nen line­aa­ri­nen perio­di­saa­tio mal­li olym­pia­ki­soi­hin val­mis­tau­tues­sa (Sto­ne et al., 2000). 

Neu­vos­to­lii­tos­sa perio­di­saa­tion (ja yli­pää­tään lii­kun­ta­tie­teen) tut­ki­mus- ja kehi­tys­työ oli tuol­loin huo­mat­ta­van laa­jaa ja sys­te­maat­tis­ta. Tämän tut­ki­mus­työn tulok­se­na syn­tyi klas­si­nen perio­di­saa­tio­mal­li. Muis­sa­kin mais­sa toki käy­tet­tiin ja kehi­tet­tiin saman­tyy­lis­tä perio­di­saa­tio­ta, tosin pie­nem­mäs­sä mittakaavassa. 

KUVA 4: Klas­si­nen perio­di­saa­tio­mal­li, mis­sä har­joi­tus­vo­lyy­mi on aluk­si kor­keal­la ja vähe­nee pää­kil­pai­lun lähes­tyes­sä. Samal­la har­joit­te­lun inten­si­teet­ti nousee.

Perio­di­saa­tio on erit­täin vähän tut­kit­tu aihea­lue. Joh­tuen luul­ta­vas­ti sii­tä, että perio­di­saa­tio ei ole mikään sel­keäs­ti käsi­tet­tä­vä koko­nai­suus. Eril­lai­sia mal­le­ja voi­daan esit­tää, mut­ta näi­den­kin sisäl­lä voi olla loput­ta­mat­to­mas­ti eril­lai­sia muu­tu­jia, joi­ta voi siir­rel­lä ja muu­tel­la. Perio­di­saa­tio perus­tuu Selyen ylei­seeen adap­taa­tio syndroo­ma - teo­ri­aan (GAS - gene­ral adap­ta­tion syndro­me). Se perus­tuu kehon reak­tioi­hin, jot­ka ovat häly­tys, vas­tus­tus ja uupu­mi­nen. (Selye, 1950). Teo­ri­aa on nyky­päi­vi­nä kri­ti­soi­tu yksin­ker­tais­ta­mi­ses­ta ja sii­tä, että se ei huo­mioi esi­mer­kik­si psy­ko­lo­gi­sia, tek­ni­siä ja ravin­nol­li­sia seik­ko­ja. Selyen teo­rian mukaan har­joit­te­lua pide­tään stres­si­te­ki­jä­nä, johon voi­daan sovel­taa GAS - teo­ri­aa. Har­joit­te­lun tulee olla progres­sii­vi­ses­ti haas­ta­vaa, jot­ta tasan­ne­vai­het­ta ei tule har­joit­te­lus­sa ja toi­saal­ta har­joit­te­lu ei saa olla ylikuluttavaa. 

Periodisaatiomalleista kolmea on tutkittu lihashypertrofian kannalta: perinteinen lineaarinen malli, ei-lineaarinen ja käänteinen periodisaatio. 

Perin­tei­ses­sä line­aa­ri­ses­sa mal­lis­sa on vähin­tään mak­ro­sykli, meso­sykli ja mik­ro­sykli (esi­mer­kik­si vuo­si, perus­kun­to­kausi 8 vko, yksi har­joi­tus­viik­ko). Mal­li ete­nee kor­keas­ta voluu­mis­ta ja mata­las­ta inten­si­tee­tis­tä koh­ti kor­ke­aan inten­si­teet­tiin ja mata­laan voluu­miin. Esi­mer­kik­si raken­teel­li­nen jakso/hypertrofinen jak­so, jos­sa voluu­mi nousee ja inten­si­teet­ti pysyy 60-75% välil­lä, seu­raa­vak­si voi olla perus­voi­ma­kausi inten­si­tee­tin olles­sa 80-90% välil­lä ja voluu­min vähe­tes­sä. Vii­mei­nen meso­sykli oli­si inten­si­tee­til­tään suu­rin 90-100%, mut­ta voluu­mil­taan pienin. 

Lihas­kas­vun osal­ta aihet­ta on tut­kit­tu jon­kin ver­ran, mut­ta itse pidän tut­ki­muk­sia meto­do­lo­gi­sil­ta osuuk­sil­ta ontu­vil­ta, joten joh­to­pää­tök­siä ei tule vetää vie­lä näi­den tut­ki­mus­ten poh­jal­ta. Sto­ne ja kump­pa­nit (1981) tut­ki­vat perio­di­saa­tioi­dun ohjel­man ja ei-perio­di­soi­dun ohjel­man ero­ja, ja huo­ma­si­vat hypert­ro­fian (mitat­tu veden alais­pun­ni­tuk­sel­la) eroa­van tilas­tol­li­ses­ti mer­kit­se­väs­ti ei-perio­di­soi­dus­ta ohjel­moin­nis­ta. Baker:in tut­ki­mus­po­ruk­ka taa (1994) ei löy­tä­nyt ero­ja perio­di­sa­tioi­dun ja ei-perio­di­saa­tio­ui­dun välil­le (iho­poi­mu­mit­taus). Kun taas Mon­tei­ro ja kump­pa­nit (2009) löy­si­vät eron (iho­poi­mu, ei tilas­tol­li­ses­ti mer­kit­tä­vä) perio­di­soi­dun har­joit­te­lun hyväksi. 

Voi­man osal­ta perio­di­soi­tu har­joit­te­lu tuot­taa kiis­tat­ta parem­pia tulok­sia kuin ei perio­di­soi­tu har­joit­te­lu (Ahma­dizad et al., 2014;, Mon­tei­ro et al., 2009,Willoughby, 1993). Voi­si aja­tel­la­kin, että kos­ka voi­ma nousee parem­min perio­di­soi­dul­la har­joit­te­lul­la, joh­tai­si se mekaa­ni­sen kuor­mi­tuk­sen joh­dos­ta myös suu­rem­piin hypert­ro­fi­siin adap­taa­tioi­hin ajan kans­sa, mut­ta tätä ei ole vie­lä todistettu. 

KUVA 5: Perio­di­soi­tu har­joit­te­lu tuot­taa kes­ki­mää­rin 21,78 – 23,62% voi­man nousun, kun taas ei perio­di­soi­tu har­joit­te­lu joh­taa vain 18,90 – 19,10% kes­ki­mää­räi­seen voi­man nousuun. Viik­ko­ta­sol­la samat luvut 1,96 % - 2,05 % ver­rat­tu­na ei perio­di­soi­tuun 1,59 – 1,70%. (Nuc­kols, 2018.)

Ei-line­aa­ri­nen perio­di­saa­tio tai aal­toi­le­va perio­di­saa­tio on nyky­ään yksi suo­si­tuim­mis­ta suun­tauk­sis­ta. Sitä on käy­tet­ty jo kau­an, mut­ta Poliquin (1988) oli ensim­mäi­nen, joka esit­te­li sen tie­deyh­tei­sös­sä. Hänen mukaan­sa line­aa­ri­sen ohjel­moin­nin ongel­mat ovat lii­an suu­ri progres­sii­vi­nen pai­non lisäys lii­an lyhyes­sä ajas­sa ja alus­sa saa­vu­tet­tu­jen hypert­ro­fis­ten adap­taa­tioi­den mene­tys muis­sa meso­sykleis­sä, kos­ka voluu­mi las­kee liikaa. 

Aal­toi­le­vas­sa perio­di­saa­tios­sa vaih­del­laan voluu­mia ja inten­si­teet­tiä kuin­kas muu­ten­kaan kuin aal­toi­le­vaan tyy­liin. Mal­lia on kehi­tet­ty eteen­päin ja täl­lä het­kel­lä suo­si­tuin mal­li tai­taa olla päi­vit­täin vaih­tu­va perio­di­saa­tio (dai­ly undu­la­ting perio­diza­tion - DUP). Täs­sä mal­lis­sa on vii­kon sisäl­lä mak­si­mi­voi­ma, perus­voi­ma ja hypert­ro­fi­nen har­joi­tus. Aihet­ta on tut­kit­tu suh­teel­li­sen laa­jas­ti. Ja vain yksi tut­ki­mus sai tilas­tol­li­ses­ti mer­kit­se­vän eron line­aa­ri­sen ja ei-line­aa­ri­sen mal­lin välil­le. Täs­sä tut­ki­muk­ses­sa ei-line­aa­ri­nen mal­li oli sel­väs­ti parem­pi lisää­mään kyy­när­pään kou­kis­ta­jien ja ojen­ta­jien tiheyt­tä (Simao et al., 2012). Muu­ten muis­sa tut­ki­muk­sis­sa ei ole saa­tu ero­ja mal­lien välil­le lihas­kas­vun osal­ta, mikä osoit­taa kum­man­kin mal­lin ole­van yhtä toi­mi­va lihas­kas­vun osal­ta (Baker et al., 1994; Davitt et al., 2014; , Har­ries et al., 2015; Mon­tei­ro et al., 2009, Pres­tes et al., 2009, Simao et al., 2012). Toi­saal­ta tut­ki­mus­ten kes­to on ollut kor­keim­mil­laan vain 12 viik­koa ja kun puhu­taan perio­di­saa­tios­ta ylei­ses­ti urhei­li­joi­den osal­ta puhu­taan vuosista. 

Itse suo­sin val­men­net­ta­vil­la­ni enem­män hybri­di­mal­lia, joka on ver­sio aal­toi­le­vas­ta mal­lis­ta. Täs­sä mal­lis­sa har­joi­tus­oh­jel­ma on laa­dit­tu blok­kei­hin ja näi­den blok­kien sisäl­lä tapah­tuu aal­toi­lua. Blo­kit toi­saal­ta ete­ne­vät line­aa­ri­ses­ti. Vii­kon sisäl­lä sii­nä teh­dään mak­si­mi­voi­ma­sar­jo­ja ja perus­voi­ma sar­jo­ja samas­sa har­joi­tuk­ses­sa jär­ke­väs­ti ohjel­moi­den. Pit­kil­lä perus­voi­ma­kausil­la saat­taa hävi­tä lii­kaa mak­si­mi­voi­maa ja pit­kil­lä mak­si­mi­voi­ma kausil­la saat­taa hävi­tä lii­kaa lihas­ta tai perus­voi­maa, joten jär­ke­vä hybri­dioh­jel­moin­ti pois­taa nämä ongelmat.

KUVA 6: Aal­toi­le­va perio­di­saa­tio, mis­sä volyy­mi ja inten­si­teet­ti aal­toi­le­vat mah­dol­lis­taen inten­si­tee­tin yllä­pi­don perus­kun­to­kau­del­la ja volyy­min yllä­pi­don kisakaudella. 

Kään­teis­tä perio­di­saa­tio­ta on ehdo­tet­tu lihas­kas­vuun täh­tää­vil­le tär­keim­mäk­si ohjel­mak­si. Line­aa­ri­nen mal­li tiput­taa jat­ku­vas­ti voluu­mia koh­ti kau­den pää­täh­täin­tä ja kun tie­de­tään voluu­min ole­van elin­tär­keä hypert­ro­fian kan­nal­ta voi­si aja­tel­la line­aa­ri­sen mal­lin ole­van huo­no lihas­kas­vun kan­nal­ta. Kään­tei­ses­sä mal­lis­sa voluuu­mi on kor­keim­mil­laan kau­den pää­täh­täi­men koh­dal­la. Aihe on vie­lä tut­ki­mus­ken­täl­lä tuo­re ja vain tie­tääk­se­ni Pres­tes ja kump­pa­nit (2009) ovat sitä tut­ki­neet huo­noin tulok­sin kään­tei­sen mal­lin puo­les­ta. Line­aa­ri­nen mal­li oli huo­mat­ta­vas­ti parem­pi kuin kään­tei­nen mal­li. Toi­saal­ta mit­tauk­sis­sa käy­tet­tiin iho­poi­mu­pih­te­jä, jot­ka ovat meto­di­ses­ti yhtä tyh­jän kanssa. 

Tiet­tyä suun­ni­tel­mal­li­suut­ta har­joit­te­luun tar­vi­taan, kos­ka muu­ten har­joit­te­lus­ta puut­tuu vari­aa­tio, progres­sii­vi­suus ja tavoit­teet. Lihas­kas­vun osal­ta yksi tär­keim­mis­tä perio­di­saa­tion tuo­mis­ta asiois­ta on keven­ne­tyt jak­sot. Keho ottaa parem­min vas­taan har­joit­te­lua kuin välil­lä tiput­taa voluu­mia ja antaa kro­pan palau­tua. Lisäk­si on tär­keä kerä­tä palau­tet­ta perio­di­saa­tion toi­mi­vuu­des­ta ja suun­ni­tel­man muok­kaa­mi­nen sen mukaan aut­ta­vat kehit­tä­mään ohjelmointia. 

Kii­tos luki­jal­le, jos jak­soit lukea tän­ne saak­ka! Alla läh­de­luet­te­lo kai­kis­ta artik­ke­li­sar­jan osis­ta. Aihee­seen liit­ty­vä luke­mi­nen ei ihan heti lopu kes­ken. Jätä palau­tet­ta tai kom­ment­te­ja ja tsemp­piä tree­nei­hin!

Lähteet:

Ahtiai­nen, J., Paka­ri­nen, A., Krae­mer, W. & Häk­ki­nen, K. (2003). Acu­te Hor­mo­nal and Neu­ro­muscu­lar Res­pon­ses and Reco­ve­ry to Forced vs. Maxi­mum Repe­ti­tions Mul­tiple Resis­tance Exerci­ses. Inter­na­tio­nal Jour­nal of Sports Medici­ne, 24(6), 410–418. doi: 10.1055/s-2003-41171

Ahtiai­nen, J. P., Paka­ri­nen, A., Alen, M., Krae­mer, W. J., & Häk­ki­nen, K. (2005). Short vs. Long Rest Period Between the Sets in Hypert­rop­hic Resis­tance Trai­ning: Influence on Muscle Strength, Size, and Hor­mo­nal Adap­ta­tions in Trai­ned Men. The Jour­nal of Strength and Con­di­tio­ning Research, 19(3), 572. doi: 10.1519/15604.1

Ahtiai­nen JP, Wal­ker S, Pel­to­nen H, Hol­via­la J, Sil­lan­pää E, Kara­vir­ta L, et al. Hete­ro­ge­nei­ty in resis­tance trai­ning-induced muscle strength and mass res­pon­ses in men and women of dif­fe­rent ages. Age (Oma­ha). 2016;38:1–13.

Ahma­dizad,  S., Ghor­ba­ni, S., Gha­se­mi­ka­ram, M. & Bah­manza­deh, M. (2014) Effects of short-term non­pe­rio­dized, linear perio­dized and dai­ly undu­la­ting perio­dized resis­tance trai­ning on plas­ma adi­po­nec­tin, lep­tin and insu­lin resis­tance. Cli­nical bioc­he­mi­stry, 47: 417-422.

Alegre, L., Jime­nez, F., Gonza­lo-Orden, J., Ace­ro, R. & Agua­do, X. (2006). Effects of dyna­mic resis­tance trai­ning on fascicle length and iso­met­ric strength. Jour­nal of sports sciences: 24. 501-8. 10.1080/02640410500189322.

Allen, D. G., Whi­te­head, N. P., & Yeung, E. W. (2005). Mec­ha­nisms of stretch-induced muscle dama­ge in nor­mal and dystrop­hic muscle: role of ionic chan­ges. The Jour­nal of Phy­sio­lo­gy, 567(3), 723–735. doi: 10.1113/jphysiol.2005.091694

Alway, S. E., Grumbt, W. H., Stray-Gun­der­sen, J., & Gonyea, W. J. (1992). Effects of resis­tance trai­ning on elbow flexors of high­ly com­pe­ti­ti­ve body­buil­ders. Jour­nal of Applied Phy­sio­lo­gy, 72(4), 1512–1521. doi: 10.1152/jappl.1992.72.4.1512

Ather­ton, P. J., Babraj, J., Smith, K., Singh, J., Ren­nie, M. J., & Wac­ker­ha­ge, H. (2005). Selec­ti­ve acti­va­tion of AMPK-PGC-1α or PKB-TSC2-mTOR sig­na­ling can explain speci­fic adap­ti­ve res­pon­ses to endu­rance or resis­tance trai­ning-like elect­rical muscle sti­mu­la­tion. The FASEB Jour­nal, 19(7), 786–788. doi: 10.1096/fj.04-2179fje

Baker, D., Wil­son, G. & Caro­lyn, R. (1994) Perio­diza­tion: The effect on strength of mani­pu­la­ting volu­me and inten­si­ty. Jour­nal of strength and con­di­tio­ning research, 8: 235-242.

Bam­man, M. M., Pet­rel­la, J. K., Kim, J.-S., May­hew, D. L., & Cross, J. M. (2007). Clus­ter ana­ly­sis tests the impor­tance of myoge­nic gene expres­sion during myofi­ber hypert­rop­hy in humans. Jour­nal of Applied Phy­sio­lo­gy, 102(6), 2232–2239. doi: 10.1152/japplphysiol.00024.2007

Benzia­ne, B., Bur­ton, T. J., Scan­lan, B., Galus­ka, D., Can­ny, B. J., Chi­ba­lin, A. V., … Step­to, N. K. (2008). Diver­gent cell sig­na­ling after short-term inten­si­fied endu­rance trai­ning in human ske­le­tal muscle. Ame­rican Jour­nal of Phy­sio­lo­gy-Endoc­ri­no­lo­gy and Meta­bo­lism, 295(6). doi: 10.1152/ajpendo.90428.2008

Blaze­vich, A. J., Can­na­van, D., Cole­man, D. R., & Hor­ne, S. (2007). Influence of concent­ric and eccent­ric resis­tance trai­ning on arc­hi­tec­tu­ral adap­ta­tion in human quadriceps muscles. Jour­nal of Applied Phy­sio­lo­gy, 103(5), 1565–1575. doi: 10.1152/japplphysiol.00578.2007

Bon­de­sen, B. A., Mills, S. T., & Pav­lath, G. K. (2006). The COX-2 pathway regu­la­tes growth of atrop­hied muscle via mul­tiple mec­ha­nisms. Ame­rican Jour­nal of Phy­sio­lo­gy-Cell Phy­sio­lo­gy, 290(6). doi: 10.1152/ajpcell.00518.2005

Bon­de­sen, B. A., Mills, S. T., Kegley, K. M., & Pav­lath, G. K. (2004). The COX-2 pathway is essen­tial during ear­ly sta­ges of ske­le­tal muscle rege­ne­ra­tion. Ame­rican Jour­nal of Phy­sio­lo­gy-Cell Phy­sio­lo­gy, 287(2). doi: 10.1152/ajpcell.00088.2004

Bren­ta­no, M. & Mar­tins Kruel, L. (2011) A review on strength exerci­se-induced muscle dama­ge: applica­tions, adap­tion mec­ha­nisms and limi­ta­tions. J Sports Med Phys Fit­ness, 51(1): 1-10.

Burd, N. A., Holwer­da, A. M., Sel­by, K. C., West, D. W. D., Staples, A. W., Cain, N. E., … Phil­lips, S. M. (2010). Resis­tance exerci­se volu­me affects myofi­bril­lar pro­tein synt­he­sis and ana­bo­lic sig­nal­ling molecu­le phosp­ho­ry­la­tion in young men. The Jour­nal of Phy­sio­lo­gy, 588(16), 3119–3130. doi: 10.1113/jphysiol.2010.192856

Burd, N. A., Mitc­hell, C. J., Churchward-Ven­ne, T. A., & Phil­lips, S. M. (2012). Big­ger weights may not beget big­ger muscles: evi­dence from acu­te muscle pro­tein synt­he­tic res­pon­ses after resis­tance exerci­se. Applied Phy­sio­lo­gy, Nut­ri­tion, and Meta­bo­lism, 37(3), 551–554. doi: 10.1139/h2012-022

Choi J., Taka­has­hi H., Itai Y. (1998) The dif­fe­rence between effects of ‘power-up type’ and ‘bulk-up type’ strength trai­ning exerci­ses: With special refe­rence to muscle cross-sec­tio­nal area. Jpn J Phys Fit­ness Sports Med 47(1), 119-129.

Clark­son, P. M., Byr­nes, W. C., Mccor­mick, K. M., Turcot­te, L. P., & Whi­te, J. S. (1985). Muscle Sore­ness And Serum Crea­ti­ne Kina­se Acti­vi­ty Fol­lowing Iso­met­ric, Eccent­ric And Concent­ric Exerci­se. Medici­ne & Science in Sports & Exerci­se, 17(2), 277. doi: 10.1249/00005768-198504000-00424

Cof­fey, V. G., Zhong, Z., Shield, A., Can­ny, B. J., Chi­ba­lin, A. V., Zie­rath, J. R., & Haw­ley, J. A. (2006). Ear­ly sig­na­ling res­pon­ses to diver­gent exerci­se sti­mu­li in ske­le­tal muscle from well-trai­ned humans. The FASEB Jour­nal, 20(1), 190–192. doi: 10.1096/fj.05-4809fje

Cor­ne­li­son, D. & Wold, B. (1997) Single-cell ana­ly­sis of regu­la­to­ry gene expres­sion in qui­escent and acti­va­ted mouse ske­le­tal muscle satel­li­te cells. Advances in deve­lop­men­tal bio­lo­gy, 191(2): 270–283.

Con­boy, I. M., Con­boy, M. J., Wagers, A. J., Gir­ma, E. R., Weiss­man, I. L., & Ran­do, T. A. (2005). Reju­ve­na­tion of aged pro­ge­ni­tor cells by expo­su­re to a young sys­te­mic envi­ron­ment. Natu­re, 433(7027): 760–764. doi: 10.1038/nature03260

Dan­gott, B., Schultz, E., & Mozdziak, P. E. (2000). Die­ta­ry Crea­ti­ne Mono­hy­dra­te Supple­men­ta­tion Inc­rea­ses Satel­li­te Cell Mito­tic Acti­vi­ty During Com­pen­sa­to­ry Hypert­rop­hy. Inter­na­tio­nal Jour­nal of Sports Medici­ne, 21(1), 13–16. doi: 10.1055/s-2000-8848

Davitt, P. M., Pel­legri­no, J. K., Schanzer, J. R., Tjio­nas, H., & Arent, S. M. (2014). The Effects of a Com­bi­ned Resis­tance Trai­ning and Endu­rance Exerci­se Pro­gram in Inac­ti­ve Col­le­ge Fema­le Sub­jects. Jour­nal of Strength and Con­di­tio­ning Research, 28(7), 1937–1945. doi: 10.1519/jsc.0000000000000355

Deva­ney, J. M., Tosi, L. L., Fritz, D. T., Gor­dish-Dress­man, H. A., Jiang, S., Orku­noglu-Suer, F. E., … Rogers, M. B. (2009). Dif­fe­rences in fat and muscle mass associa­ted with a func­tio­nal human poly­morp­hism in a post-transc­rip­tio­nalBMP2­ge­ne regu­la­to­ry ele­ment. Jour­nal of Cel­lu­lar Bioc­he­mi­stry, 107(6), 1073–1082. doi: 10.1002/jcb.22209

Dhawan, J., & Ran­do, T. A. (2005). Stem cells in post­na­tal myoge­ne­sis: molecu­lar mec­ha­nisms of satel­li­te cell qui­escence, acti­va­tion and reple­nish­ment. Trends in Cell Bio­lo­gy, 15(12), 666–673. doi: 10.1016/j.tcb.2005.10.007

Egner, I. M., Bruus­gaard, J. C., Eftestøl, E., & Gun­der­sen, K. (2013). A cel­lu­lar memo­ry mec­ha­nism aids over­load hypert­rop­hy in muscle long after an epi­so­dic expo­su­re to ana­bo­lic ste­roids. The Jour­nal of Phy­sio­lo­gy, 591(24): 6221–6230. doi: 10.1113/jphysiol.2013.264457

Evans, W. J., & Can­non, J. G. (1991). The Meta­bo­lic Effects of Exerci­se-Induced Muscle Dama­ge. Exerci­se and Sport Sciences Reviews, 19(1). doi: 10.1249/00003677-199101000-00003

Fin­kenzel­ler, G., New­so­me, W., Lang, F., & Häus­sin­ger, D. (1994). Inc­rea­se of c-jun mRNA upon hypo-osmo­tic cell swel­ling of rat hepa­to­ma cells. FEBS Let­ters, 340(3), 163–166. doi: 10.1016/0014-5793(94)80129-0

Fol­land, J. & Wil­liams, A. (2007) The adap­ta­tions to strength trai­ning - morp­ho­lo­gical and neu­ro­lo­gical cont­ri­bu­tions to inc­rea­sed strength. Sports medici­ne, 37 (2): 145-168.

Fon­seca, R. M., Roschel, H., Trico­li, V., Souza, E. O. D., Wil­son, J. M., Lau­ren­ti­no, G. C., … Ugri­nowitsch, C. (2014). Chan­ges in Exerci­ses Are More Effec­ti­ve Than in Loa­ding Sche­mes to Impro­ve Muscle Strength. Jour­nal of Strength and Con­di­tio­ning Research, 28(11), 3085–3092. doi: 10.1519/jsc.0000000000000539

Fry, C. S., Glynn, E. L., Drum­mond, M. J., Tim­mer­man, K. L., Fuji­ta, S., Abe, T., … Ras­mus­sen, B. B. (2010). Blood flow restric­tion exerci­se sti­mu­la­tes mTORC1 sig­na­ling and muscle pro­tein synt­he­sis in older men. Jour­nal of Applied Phy­sio­lo­gy, 108(5), 1199–1209. doi: 10.1152/japplphysiol.01266.2009

Gar­di­ner NE. Ath­le­tics of the ancient world. Oxford: Uni­ver­si­ty Press; 1930.

Glass, D. J. (2010). PI3 Kina­se Regu­la­tion of Ske­le­tal Muscle Hypert­rop­hy and Atrop­hy. Cur­rent Topics in Mic­ro­bio­lo­gy and Immu­no­lo­gy Phosp­hoi­no­si­ti­de 3-Kina­se in Health and Disea­se, 267–278. doi: 10.1007/82_2010_78

Good­man, C. A., May­hew, D. L., & Horn­ber­ger, T. A. (2011). Recent progress toward unders­tan­ding the molecu­lar mec­ha­nisms that regu­la­te ske­le­tal muscle mass. Cel­lu­lar Sig­nal­ling, 23(12), 1896–1906. doi: 10.1016/j.cellsig.2011.07.013

Gor­don, S. E., Krae­mer, W. J., Vos, N. H., Lynch, J. M., & Knutt­gen, H. G. (1994). Effect of acid-base balance on the growth hor­mo­ne res­pon­se to acu­te high-inten­si­ty cycle exerci­se. Jour­nal of Applied Phy­sio­lo­gy, 76(2), 821–829. doi: 10.1152/jappl.1994.76.2.821

Goto, K., Ishii, N., Kizu­ka, T. & Taka­mat­su, K. (2005) The impact of meta­bo­lic stress on hor­mo­nal res­pon­ses and muscu­lar adap­ta­tions. Medici­ne and science in sports and exerci­se, 37(6): 955-963.

Guyton. A. C., Hall J. E. 2011. Text­book of Medical Phy­sio­lo­gy. 12th edi­tion. Phi­la­delp­hia, USA : W.B. Saun­ders Company

Har­ries, S. K., Lubans, D. R., & Cal­lis­ter, R. (2016). Com­pa­ri­son of resis­tance trai­ning progres­sion models on maxi­mal strength in sub-eli­te ado­lescent rug­by union players. Jour­nal of Science and Medici­ne in Sport, 19(2), 163–169. doi: 10.1016/j.jsams.2015.01.007

Hac­kett, D. A., John­son, N. A., & Chow, C.-M. (2013). Trai­ning Prac­tices and Ergo­ge­nic Aids Used by Male Body­buil­ders. Jour­nal of Strength and Con­di­tio­ning Research, 27(6), 1609–1617. doi: 10.1519/jsc.0b013e318271272a

Han­day­aning­sih, A.-E., Iguc­hi, G., Fukuo­ka, H., Nis­hizawa, H., Taka­has­hi, M., Yama­mo­to, M., … Taka­has­hi, Y. (2011). Reac­ti­ve Oxy­gen Species Play an Essen­tial Role in IGF-I Sig­na­ling and IGF-I-Induced Myocy­te Hypert­rop­hy in C2C12 Myocy­tes. Endoc­ri­no­lo­gy, 152(3), 912–921. doi: 10.1210/en.2010-0981

Har­ber, M. P., Konop­ka, A. R., Douglass, M. D., Minc­hev, K., Kamins­ky, L. A., Trap­pe, T. A., & Trap­pe, S. (2009). Aero­bic exerci­se trai­ning impro­ves who­le muscle and single myofi­ber size and func­tion in older women. Ame­rican Jour­nal of Phy­sio­lo­gy-Regu­la­to­ry, Inte­gra­ti­ve and Com­pa­ra­ti­ve Phy­sio­lo­gy, 297(5). doi: 10.1152/ajpregu.00354.2009

Har­ber, M. P., Konop­ka, A. R., Undem, M. K., Hinkley, J. M., Minc­hev, K., Kamins­ky, L. A., … Trap­pe, S. (2012). Aero­bic exerci­se trai­ning induces ske­le­tal muscle hypert­rop­hy and age-depen­dent adap­ta­tions in myofi­ber func­tion in young and older men. Jour­nal of Applied Phy­sio­lo­gy, 113(9), 1495–1504. doi: 10.1152/japplphysiol.00786.2012

Har­rid­ge, S. (2007) Plas­tici­ty of human ske­le­tal muscle: Gene expres­sion to in vivo func­tion. Exp Phy­sio­lo. 92: 738-797.

Helms, E., Ara­gon, A. & Fitschen, P. (2014). Evi­dence-based recom­men­da­tions for natu­ral body­buil­ding con­test pre­pa­ra­tion: Nut­ri­tion and supple­men­ta­tion. Jour­nal of the Inter­na­tio­nal Socie­ty of Sports Nut­ri­tion. 11. 20. 10.1186/1550-2783-11-20.

Hill, M., Wer­nig, A., & Golds­pink, G. (2003). Muscle satel­li­te (stem) cell acti­va­tion during local tis­sue inju­ry and repair. Jour­nal of Ana­to­my, 203(1), 89–99. doi: 10.1046/j.1469-7580.2003.00195.x

Horn­ber­ger, T. A., Chu, W. K., Mak, Y. W., Hsiung, J. W., Huang, S. A., & Chien, S. (2006). The role of phosp­ho­li­pa­se D and phosp­ha­ti­dic acid in the mec­ha­nical acti­va­tion of mTOR sig­na­ling in ske­le­tal muscle. Procee­dings of the Natio­nal Aca­de­my of Sciences, 103(12), 4741–4746. doi: 10.1073/pnas.0600678103

Izqui­er­do, M., Ibañez, J., Gonzá­lez-Badil­lo, J. J., Häk­ki­nen, K., Rata­mess, N. A., Krae­mer, W. J., French, D., Esla­va, J., Alta­dill, A., Asiain X. & Goros­tia­ga, E. M. (2006). Dif­fe­ren­tial effects of strength trai­ning lea­ding to fai­lu­re ver­sus not to fai­lu­re on hor­mo­nal res­pon­ses, strength, and muscle power gains. Jour­nal of Applied Phy­sio­lo­gy, 100(5), 1647–1656. doi: 10.1152/japplphysiol.01400.2005

Jacin­to, E., & Hall, M. N. (2003). TOR sig­nal­ling in bugs, brain and brawn. Natu­re Reviews Molecu­lar Cell Bio­lo­gy, 4(2), 117–126. doi: 10.1038/nrm1018

Kadi, F., Eriks­son, A., Holm­ner, S., But­ler-Brow­ne, G. & Thor­nell, L. (1999) Cel­lu­lar adap­ta­tion of the tra­pezius muscle in strength-trai­ned ath­le­tes. His­toc­he­mi­stry and cell bio­lo­gy, 111(3): 189-95.

Kadi, F. & Thor­nell, L.E. (2000) Conco­mi­tant inc­rea­ses in myonuclear and satel­li­te cell con­tent of fema­le tra­pezius muscle fol­lowing strength trai­ning. His­toc­he­mi­stry and cell bio­lo­gy 113, 99-103.

Keogh, J. W., Wil­son, G. J., & Weat­her­by, R. E. (1999). A Cross-Sec­tio­nal Com­pa­ri­son of Dif­fe­rent Resis­tance Trai­ning Tech­niques in the Bench Press. Jour­nal of Strength and Con­di­tio­ning Research, 13(3), 247–258. doi: 10.1519/00124278-199908000-00012

Kohn, T. A., Essén-Gus­tavs­son, B., & Myburgh, K. H. (2010). Speci­fic muscle adap­ta­tions in type II fibers after high-inten­si­ty inter­val trai­ning of well-trai­ned run­ners. Scan­di­na­vian Jour­nal of Medici­ne & Science in Sports, 21(6), 765–772. doi: 10.1111/j.1600-0838.2010.01136.x

Kosek, D. J., Kim, J.-S., Pet­rel­la, J. K., Cross, J. M., & Bam­man, M. M. (2006). Efficacy of 3 days/wk resis­tance trai­ning on myofi­ber hypert­rop­hy and myoge­nic mec­ha­nisms in young vs. older adults. Jour­nal of Applied Phy­sio­lo­gy, 101(2), 531–544. doi: 10.1152/japplphysiol.01474.2005

Krie­ger, J. W. (2010). Single vs. Mul­tiple Sets of Resis­tance Exerci­se for Muscle Hypert­rop­hy: A Meta-Ana­ly­sis. Jour­nal of Strength and Con­di­tio­ning Research, 24(4), 1150–1159. doi: 10.1519/jsc.0b013e3181d4d436

Lang, F (2007). Mec­ha­nisms and Sig­ni­ficance of Cell Volu­me Regu­la­tion. J Am Coll Nutr., 26: 613s-623s.

Lang, F., Busch, G. L., Rit­ter, M., Völkl, H., Wal­deg­ger, S., Gul­bins, E., & Häus­sin­ger, D. (1998). Func­tio­nal Sig­ni­ficance of Cell Volu­me Regu­la­to­ry Mec­ha­nisms. Phy­sio­lo­gical Reviews, 78(1), 247–306. doi: 10.1152/physrev.1998.78.1.247

Loen­ne­ke, J. P., Wil­son, J. M., Marín, P. J., Zour­dos, M. C., & Bem­ben, M. G. (2011). Low inten­si­ty blood flow restric­tion trai­ning: a meta-ana­ly­sis. Euro­pean Jour­nal of Applied Phy­sio­lo­gy, 112(5), 1849–1859. doi: 10.1007/s00421-011-2167-x

Loen­ne­ke, J. P., Thie­baud, R. S., & Abe, T. (2014). Does blood flow restric­tion result in ske­le­tal muscle dama­ge? A cri­tical review of avai­lable evi­dence. Scan­di­na­vian Jour­nal of Medici­ne & Science in Sports, 24(6). doi: 10.1111/sms.12210

Lynn, R. & Mor­gan, D. (1994) Decli­ne run­ning pro­duces more sarco­me­res in rat vas­tus inter­me­dius muscle fibers than does incli­ne run­ning. Jour­nal of applied phy­sio­lo­gy: 77: 1439-1444.

Malm, C. (2001). Exerci­se-induced muscle dama­ge and inflam­ma­tion: fact or fic­tion? Acta Phy­sio­lo­gica Scan­di­na­vica, 171(3), 233–239. doi: 10.1046/j.1365-201x.2001.00825.x

Mac­dou­gall, J. D., Giba­la, M., Tar­no­pols­ky, M., Mac­do­nald, J., Inte­ri­sa­no, S., & Yaras­hes­ki, K. (1995). The Time Cour­se For Ele­va­ted Muscle Pro­tein Synt­he­sis Fol­lowing Hea­vy Resis­tance Exerci­se. Medici­ne & Science in Sports & Exerci­se, 27(Supplement). doi: 10.1249/00005768-199505001-00367

Mac­Dou­gall, D. Ward, G., Sale, D. & Sut­ton, J. (1977) Bioc­he­mical adap­ta­tion of human ske­le­tal muscle to hea­vy resis­tance trai­ning and immo­bi­liza­tion. Jour­nal of applied phy­sio­lo­gy: res­pi­ra­to­ry, envi­ron­men­tal and exerci­se phy­sio­lo­gy: 43(4): 700-3.

Mac­dou­gall, J. D., Sale, D. G., Alway, S. E., & Sut­ton, J. R. (1984). Muscle fiber num­ber in biceps brac­hii in body­buil­ders and cont­rol sub­jects. Jour­nal of Applied Phy­sio­lo­gy, 57(5), 1399–1403. doi: 10.1152/jappl.1984.57.5.1399

Mascher, H., Anders­son, H., Nils­son, P.-A., Ekblom, B., & Blom­strand, E. (2007). Chan­ges in sig­nal­ling pathways regu­la­ting pro­tein synt­he­sis in human muscle in the reco­ve­ry period after endu­rance exerci­se. Acta Phy­sio­lo­gica, 191(1), 67–75. doi: 10.1111/j.1748-1716.2007.01712.x

Masu­da K., Choi J.Y., Shi­mo­jo H., Kat­su­ta S. (1999) Main­te­nance of myoglo­bin concent­ra­tion in human ske­le­tal muscle after hea­vy resis­tance trai­ning. Euro­pean Jour­nal of Applied Phy­sio­lo­gy and Occu­pa­tio­nal Phy­sio­lo­gy 79(4), 347-352. [Pub­Med] [Google Scho­lar]

Mar­ti­neau, L. & Gar­di­ner, P. (2002) Ske­le­tal muscle is sen­si­ti­ve to the ten­sion-time inte­gral but not to the rate of chan­ge of ten­sion, as asses­sed by mec­ha­nical­ly induced sig­na­ling. Jour­nal of bio­mec­ha­nic, 35: 657-663.

Mchugh, M. P. (2003). Recent advances in the unders­tan­ding of the repea­ted bout effect: the pro­tec­ti­ve effect against muscle dama­ge from a single bout of eccent­ric exerci­se. Scan­di­na­vian Jour­nal of Medici­ne and Science in Sports, 13(2), 88–97. doi: 10.1034/j.1600-0838.2003.02477.x

Mcp­her­ron, A. C., Law­ler, A. M., & Lee, S.-J. (1997). Regu­la­tion of ske­le­tal muscle mass in mice by a new TGF-p super­fa­mi­ly mem­ber. Natu­re, 387(6628), 83–90. doi: 10.1038/387083a0

Mik­ko­la, J., Rus­ko, H., Izqui­er­do, M., Goros­tia­ga, E., & Häk­ki­nen, K. (2012). Neu­ro­muscu­lar and Car­dio­vascu­lar Adap­ta­tions During Concur­rent Strength and Endu­rance Trai­ning in Unt­rai­ned Men. Inter­na­tio­nal Jour­nal of Sports Medici­ne, 33(09), 702–710. doi: 10.1055/s-0031-1295475

Moo­re, D., Phil­lips, S., Babraj, J., Smith, K. & Ren­nie, M. (2005) Myofi­bril­lar and col­la­gen pro­tein synt­he­sis in human ske­le­tal muscle in young men after maxi­mal shor­te­ning and lengt­he­ning cont­rac­tions. Ame­rican jour­nal of phy­sio­lo­gy - endoc­ri­no­lo­gy and­me­ta­bo­lism, 288: E1153E1159.

Mon­tei­ro, A., Aoki., M., Evangelista,A., Alve­no, D., Mon­tei­ro, G., Picar­ro Ida, C. & Ugri­nowitcch, C. (2009) Non­li­near perio­diza­tion maxi­mizes strength gains in split resis­tance trai­ning rou­ti­nes. Jour­nal of strength and con­di­tio­ning research, 23: 1321-1326. 

Net­re­ba, A., Popov, D., Bra­vyy, Y.,  Lyubae­va, E., Tera­da, M., Ohi­ra, T., Oka­be, H., Vino­gra­do­va, O.& Ohi­ra, Y. (2013). Res­pon­ses of knee exten­sor muscles to leg press trai­ning of various types in human. Ros­siĭs­kii fizio­lo­gic­hes­kiĭ zhur­nal ime­ni I.M. Sec­he­no­va / Ros­siĭs­kaia aka­de­miia nauk. 99. 406-16.

Ngu­yen, H. X., & Tid­ball, J. G. (2003). Null Muta­tion of gp91phoxReduces Muscle Membra­ne Lysis During Muscle Inflam­ma­tion in Mice. The Jour­nal of Phy­sio­lo­gy, 553(3), 833–841. doi: 10.1113/jphysiol.2003.051912

Nosa­ka, K., Laven­der, A., New­ton, M. & Sacco, P. (2003) Muscle dama­ge in resis­tance trai­ning – is muscle dama­ge neces­sa­ry for strength gain and muscle hypert­rop­hy? Inter­na­tio­nal jour­nal of sport and health science, 1(1):1-8.

Nuc­kols, G. (2018) Perio­diza­tion: What the data say. https://www.strongerbyscience.com/periodization-data/

Oga­sawa­ra, R., Kobay­as­hi, K., Tsu­ta­ki, A., Lee, K., Abe, T., Fuji­ta, S., … Ishii, N. (2013). mTOR sig­na­ling res­pon­se to resis­tance exerci­se is alte­red by chro­nic resis­tance trai­ning and det­rai­ning in ske­le­tal muscle. Jour­nal of Applied Phy­sio­lo­gy, 114(7), 934–940. doi: 10.1152/japplphysiol.01161.2012

Pesca­tel­lo, L. S., Deva­ney, J. M., Hubal, M. J., Thomp­son, P. D., & Hoff­man, E. P. (2013). High­lights from the Func­tio­nal Single Nucleo­ti­de Poly­morp­hisms Associa­ted with Human Muscle Size and Strength or FAMuSS Stu­dy. Bio­Med Research Inter­na­tio­nal, 2013, 1–11. doi: 10.1155/2013/643575

Pet­rel­la, J. K., Kim, J.-S., May­hew, D. L., Cross, J. M., & Bam­man, M. M. (2008). Potent myofi­ber hypert­rop­hy during resis­tance trai­ning in humans is associa­ted with satel­li­te cell-media­ted myonuclear addi­tion: a clus­ter ana­ly­sis. Jour­nal of Applied Phy­sio­lo­gy, 104(6), 1736–1742. doi: 10.1152/japplphysiol.01215.2007

Pin­to, R., Gomes, N., Radael­li, R., Bot­ton, C., Brown, L. & Bot­ta­ro, M. (2011). Effect of Ran­ge of Motion on Muscle Strength and Thick­ness. Jour­nal of strength and con­di­tio­ning research / Natio­nal Strength & Con­di­tio­ning Associa­tion. 26. 2140-5. 10.1519/JSC.0b013e31823a3b15.

Poliquin, C. (1988) Five steps to inc­rea­sing the effec­ti­ve­ness of your strength trai­ning pro­gram. Jour­nal of strength and con­di­tio­ning associa­tion. 10: 34-39.

Pres­tes, J., Frol­li­ni, A. B., Lima, C. D., Donat­to, F. F., Foschi­ni, D., Marque­ti, R. D. C., … Fleck, S. J. (2009). Com­pa­ri­son Between Linear and Dai­ly Undu­la­ting Perio­dized Resis­tance Trai­ning to Inc­rea­se Strength. Jour­nal of Strength and Con­di­tio­ning Research, 23(9), 2437–2442. doi: 10.1519/jsc.0b013e3181c03548

Qai­sar, R., Bhas­ka­ran, S. & Rem­men, H. (2016). Muscle fiber type diver­si­fica­tion during exerci­se and rege­ne­ra­tion. Free Radical Bio­lo­gy and Medici­ne. 98. 10.1016/j.freeradbiomed.2016.03.025.

Radael­li, R. J Fleck, S., Lei­te, T., Lei­te, R., Pin­to, R., Fer­nan­desm L. Simão, R. (2014). Dose Res­pon­se of 1, 3 and 5 Sets of Resis­tance Exerci­se on Strength, Local Muscu­lar Endu­rance and Hypert­rop­hy. The Jour­nal of Strength and Con­di­tio­ning Research. 29. 10.1519/JSC.0000000000000758.

Rata­mess, N. A., Fal­vo, M. J., Man­gi­ne, G. T., Hoff­man, J. R., Fai­gen­baum, A. D., & Kang, J. (2007). The effect of rest inter­val length on meta­bo­lic res­pon­ses to the bench press exerci­se. Euro­pean Jour­nal of Applied Phy­sio­lo­gy, 100(1), 1–17. doi: 10.1007/s00421-007-0394-y

Schoen­feld, B. (2010) The mec­ha­nism of muscle hypert­rop­hy and their applica­tion to resis­tance trai­ning. Jour­nal of strength and con­di­tio­ning research, 24: 2857-2872.

Schoen­feld, BJ. Science and Deve­lop­ment of Muscle Hypert­rop­hy. Cham­paign, IL; Human Kine­tics, 2016.

Schoen­feld, B, Ogborn, D. & Krie­ger, J. (2017) Dose-res­pon­se rela­tions­hip between weekly resis­tance trai­ning volu­me and inc­rea­ses in muscle mass: A sys­te­ma­tic review and meta-ana­ly­sis, Jour­nal of Sports Sciences, 35:11, 1073-1082, DOI: 10.1080/02640414.2016.1210197

Schoen­feld, B. J., Rata­mess, N. A., Peter­son, M. D., Cont­re­ras, B., Son­mez, G. T., & Alvar, B. A. (2014). Effects of Dif­fe­rent Volu­me-Equa­ted Resis­tance Trai­ning Loa­ding Stra­te­gies on Muscu­lar Adap­ta­tions in Well-Trai­ned Men. Jour­nal of Strength and Con­di­tio­ning Research, 28(10), 2909–2918. doi: 10.1519/jsc.0000000000000480

Schoen­feld, B, Grgic, J., Ogbord, D. & Krie­ger, J. (2017) Strength and hypert­rop­hy adap­ta­tions between low- ver­sus high-load resis­tance trai­ning: A sys­te­ma­tic review and meta-ana­ly­sis. The Jour­nal of strength and con­di­tio­ning research, Ahead of Print DOI: 10.1519/JSC.0000000000002200

Schoen­feld, B., Cont­re­ras, B., Vigots­ky, A., Ogborn, D., Fon­ta­na, F. & Tiry­aki-Son­mez, R. (2016). Upper body muscle acti­va­tion during low-ver­sus high-load resis­tance exerci­se in the bench press. 24. 217-224. 10.3233/IES-160620.

Schoen­feld, B. J., Rata­mess, N. A., Peter­son, M. D., Cont­re­ras, B., & Tiry­aki-Son­mez, G. (2015). Influence of Resis­tance Trai­ning Frequency on Muscu­lar Adap­ta­tions in Well-Trai­ned Men. Jour­nal of Strength and Con­di­tio­ning Research, 29(7), 1821–1829. doi: 10.1519/jsc.0000000000000970

Schoen­feld, B. J., Peter­son, M. D., Ogborn, D., Cont­re­ras, B., & Son­mez, G. T. (2015). Effects of Low- vs. High-Load Resis­tance Trai­ning on Muscle Strength and Hypert­rop­hy in Well-Trai­ned Men. Jour­nal of Strength and Con­di­tio­ning Research, 29(10), 2954–2963. doi: 10.1519/jsc.0000000000000958

Schoen­feld, B. J., Ogborn, D. I., & Krie­ger, J. W. (2015). Effect of Repe­ti­tion Dura­tion During Resis­tance Trai­ning on Muscle Hypert­rop­hy: A Sys­te­ma­tic Review and Meta-Ana­ly­sis. Sports Medici­ne, 45(4), 577–585. doi: 10.1007/s40279-015-0304-0

Schoen­feld, B. J., Cont­re­ras, B., Krie­ger, J., Grgic, J., Delcas­til­lo, K., Bel­liard, R., & Alto, A. (2019). Resis­tance Trai­ning Volu­me Enhances Muscle Hypert­rop­hy but Not Strength in Trai­ned Men. Medici­ne & Science in Sports & Exerci­se, 51(1), 94–103. doi: 10.1249/mss.0000000000001764

Schoen­feld, B.J. & Grgic, J. (2020) Effects of ran­ge of motion on muscle deve­lop­ment during resis­tance trai­ning inter­ven­tions: A sys­te­ma­tic review. SAGE open medici­ne, 8: 1-8. https://doi.org/10.1177/2050312120901559

Schuen­ke, M. D., Her­man, J. R., Gli­ders, R. M., Hager­man, F. C., Hiki­da, R. S., Rana, S. R., … Sta­ron, R. S. (2012). Ear­ly-pha­se muscu­lar adap­ta­tions in res­pon­se to slow-speed ver­sus tra­di­tio­nal resis­tance-trai­ning regi­mens. Euro­pean Jour­nal of Applied Phy­sio­lo­gy, 112(10), 3585–3595. doi: 10.1007/s00421-012-2339-3

Selye, H. (1950). Stress and the Gene­ral Adap­ta­tion Syndro­me. Bmj, 1(4667), 1383–1392. doi: 10.1136/bmj.1.4667.1383

Ser­ra­no, A. L., Baeza-Raja, B., Per­di­gue­ro, E., Jardí, M., & Muñoz-Cáno­ves, P. (2008). Inter­leu­kin-6 Is an Essen­tial Regu­la­tor of Satel­li­te Cell-Media­ted Ske­le­tal Muscle Hypert­rop­hy. Cell Meta­bo­lism, 7(1), 33–44. doi: 10.1016/j.cmet.2007.11.011

Simão, R., Spi­ne­ti, J., Sal­les, B. F. D., Mat­ta, T., Fer­nan­des, L., Fleck, S. J., … Strom-Olsen, H. E. (2012). Com­pa­ri­son Between Non­li­near and Linear Perio­dized Resis­tance Trai­ning. Jour­nal of Strength and Con­di­tio­ning Research, 26(5), 1389–1395. doi: 10.1519/jsc.0b013e318231a659

Sny­der, B. J., & Leech, J. R. (2009). Volun­ta­ry Inc­rea­se in Latis­si­mus Dor­si Muscle Acti­vi­ty During the Lat Pull-Down Fol­lowing Expert Instruc­tion. Jour­nal of Strength and Con­di­tio­ning Research, 23(8), 2204–2209. doi: 10.1519/jsc.0b013e3181bb7213

Sny­der, B. J., & Fry, W. R. (2012). Effect of Ver­bal Instruc­tion on Muscle Acti­vi­ty During the Bench Press Exerci­se. Jour­nal of Strength and Con­di­tio­ning Research, 26(9), 2394–2400. doi: 10.1519/jsc.0b013e31823f8d11

Stewart, C. & Rittwe­ger, J. (2006) Adap­ti­ve proces­ses in ske­le­tal muscle: molecu­lar regu­la­tors and gene­tic influences. Jour­nal of muscu­los­ke­le­tal and neu­ro­nal inte­rac­tions: 6(1): 73-86.

Sto­ne, M., O’Bry­ant, H. & Gar­ham­mer J. (1981) Hypot­he­tical model for strength trai­ning. Jour­nal of sports medici­ne and phy­sical fit­ness, 21: 342-351.

Sto­ne, M. H., Pot­tei­ger, J. A., Pierce, K. C., Proulx, C. M., Obry­ant, H. S., John­son, R. L., & Sto­ne, M. E. (2000). Com­pa­ri­son of the Effects of Three Dif­fe­rent Weight-Trai­ning Pro­grams on the One Repe­ti­tion Maxi­mum Squat. The Jour­nal of Strength and Con­di­tio­ning Research, 14(3), 332. doi: 10.1519/1533-4287(2000)014<0332:coteot>2.0.co;2

Taka­ra­da, Y., Takazawa, H., Sato, Y., Take­bay­as­hi, S., Tana­ka, Y., & Ishii, N. (2000). Effects of resis­tance exerci­se com­bi­ned with mode­ra­te vascu­lar occlusion on muscu­lar func­tion in humans. Jour­nal of Applied Phy­sio­lo­gy, 88(6), 2097–2106. doi: 10.1152/jappl.2000.88.6.2097

Taka­ra­da, Y., Naka­mu­ra, Y., Aru­ga, S., Onda, T., Miy­aza­ki, S., & Ishii, N. (2000). Rapid inc­rea­se in plas­ma growth hor­mo­ne after low-inten­si­ty resis­tance exerci­se with vascu­lar occlusion. Jour­nal of Applied Phy­sio­lo­gy, 88(1), 61–65. doi: 10.1152/jappl.2000.88.1.61

Tee, J. C., Bosch, A. N., & Lam­bert, M. I. (2007). Meta­bo­lic Con­sequences of Exerci­se-Induced Muscle Dama­ge. Sports Medici­ne, 37(10), 827–836. doi: 10.2165/00007256-200737100-00001

Terzis, G., Spen­gos, K., Mascher, H., Geor­gia­dis, G., Man­ta, P.  & Blom­strand, E. (2010). The degree of p70S6k and S6 phosp­ho­ry­la­tion in human ske­le­tal muscle in res­pon­se to resis­tance exerci­se depends on the trai­ning volu­me. Euro­pean jour­nal of applied phy­sio­lo­gy. 110. 835-43. 10.1007/s00421-010-1527-2.

Tho­mas, G., & Hall, M. N. (1997). TOR sig­nal­ling and cont­rol of cell growth. Cur­rent Opi­nion in Cell Bio­lo­gy, 9(6), 782–787. doi: 10.1016/s0955-0674(97)80078-6

Uchiy­ama, S., Tsu­ka­mo­to, H., Yos­hi­mu­ra, S., & Tama­ki, T. (2006). Rela­tions­hip between oxi­da­ti­ve stress in muscle tis­sue and weight-lif­ting-induced muscle dama­ge. Pflü­gers Arc­hiv - Euro­pean Jour­nal of Phy­sio­lo­gy, 452(1), 109–116. doi: 10.1007/s00424-005-0012-y

Wern­bom, M., Augusts­son, J. & Tho­mee, R. (2007). The Influence of Frequency, Inten­si­ty, Volu­me and Mode of Strength Trai­ning on Who­le Muscle Cross-Sec­tio­nal Area in Humans. Sports medici­ne (Auckland, N.Z.). 37. 225-64. 10.2165/00007256-200737030-00004.

Wil­lough­by, D. (1993) The effects of mesocycle-length weight trai­ning pro­grams invol­ving perio­diza­tion an par­tial­ly equa­ted volu­mes on upper and lower body strength. Jour­nal of strength and con­di­tio­ning research, 7: 2-8.

Wil­son, J. M., Lowe­ry, R. P., Joy, J. M., Loen­ne­ke, J. P., & Nai­mo, M. A. (2013). Prac­tical Blood Flow Restric­tion Trai­ning Inc­rea­ses Acu­te Deter­mi­nants of Hypert­rop­hy Wit­hout Inc­rea­sing Indices of Muscle Dama­ge. Jour­nal of Strength and Con­di­tio­ning Research, 27(11), 3068–3075. doi: 10.1519/jsc.0b013e31828a1ffa

Wil­son, J. M., Marin, P. J., Rhea, M. R., Wil­son, S. M., Loen­ne­ke, J. P., & Ander­son, J. C. (2012). Concur­rent Trai­ning. Jour­nal of Strength and Con­di­tio­ning Research, 26(8), 2293–2307. doi: 10.1519/jsc.0b013e31823a3e2d

Wulf, G. (2013). Atten­tio­nal focus and motor lear­ning: a review of 15 years. Inter­na­tio­nal Review of Sport and Exerci­se Psyc­ho­lo­gy, 6(1), 77–104. doi: 10.1080/1750984x.2012.723728

Yang, S. Y., & Golds­pink, G. (2002). Dif­fe­rent roles of the IGF-I Ec pep­ti­de (MGF) and matu­re IGF-I in myoblast pro­li­fe­ra­tion and dif­fe­ren­tia­tion. FEBS Let­ters, 522(1-3), 156–160. doi: 10.1016/s0014-5793(02)02918-6

Zanou, N., & Gail­ly, P. (2013). Ske­le­tal muscle hypert­rop­hy and rege­ne­ra­tion: interplay between the myoge­nic regu­la­to­ry fac­tors (MRFs) and insu­lin-like growth fac­tors (IGFs) pathways. Cel­lu­lar and Molecu­lar Life Sciences, 70(21), 4117–4130. doi: 10.1007/s00018-013-1330-4

Zanc­hi, N. E., & Lanc­ha, A. H. (2007). Mec­ha­nical sti­mu­li of ske­le­tal muscle: implica­tions on mTOR/p70s6k and pro­tein synt­he­sis. Euro­pean Jour­nal of Applied Phy­sio­lo­gy, 102(3), 253–263. doi: 10.1007/s00421-007-0588-3