Ensimmäisessä osassa pureuduttiin isometrisen harjoittelun teoriaam ja isometrisen kuormituksen aiheuttamiin adaptaatioihin. Tässä toisessa osassa syvennytään ohjelmointiesimerkkeihin ja käydään myös erilaisia liike-esimerkkejä läpi isometrisestä voimaharjoittelusta. Isometrisessä harjoittelussa vain mielikuvitus toimii rajoittavana tekijänä harjoitevalinoissa.
Käytä räjähtävää tai ballistista voimantuottotapaa isometrisessä harjoittelussa
Isometrinen voimaharjoittelu voi parantaa voimantuottonopeutta, mutta vain jos se tehdään räjähtävästi. Nopea voimantuotto on parantunut erityisesti räjähtävällä tai ballistisella voimaharjoittelulla (1, 2 & 3). Kun tavoitteena on nopean voimantuoton parantaminen, näyttäisi intentio olevan yhtä tärkeä kuin ulkoinen supistus, koska haluttu muutos on joka tapauksessa hermostollinen ei lihastyötavalla ole väliä (4). Joten käytä isometrisessä voimaharjoittelussa nopeaa voimantuottoa.
Bogdanis ja kumppanit (6) huomasivat, että isometrinen harjoittelu paransi dynaamista maksimikyykkyä kymmenisen prosenttia ja esikevennettyä hyppyä noin seitsemän prosenttia isometrisen jalkaprässiharjoittelun jälkeen. Isometrinen voimaharjoittelun siirtovaikutus on hyvä yksinkertaisiin liikkeisiin, mutta kompleksisemmat liikkeet vaativat enemmän koordinaatioharjoittelua kehittyäkseen. Isometrinen harjoittelu ei välttämättä haasta motorista aivokuorta tarpeeksi ja motorinen oppiminen saattaa jäädä pienemmälle roolille verrattuna dynaamiseen harjoitteluun. Tämä kannattaa huomioida harjoittelua suunnitellessa.
Isometrisen harjoittelun hyödyt nopeuslajeissa ja pikajuoksijalle?
Urheilussa tärkeä ominaisuus on se, että miten nopeasti voimaa pystytään tuottamaan. Urheilu tapahtuu usein sekunnin kymmenyksissä ja sadasosissa ja näissä lyhyissä hetkissä pitäisi pystyä tuottamaan mahdollisimman paljon voimaa liikkuakseen eteenpäin, vaihtaakseen suuntaan, ponnistaakseen tai esimerkiksi heittääkseen välinettä. Voimantuottonopeuden kehittäminen ilman suurempaa metabolista väsymystä on isometrisen harjoittelun yksi etu verrattuna dynaamiseen harjoitteluun.
Konsentrinen työvaihe on perinteisen voimaharjoittelun rajoittava lihastyötapa. Perinteisen kyykyn tai maastavedon aikana isometrinen ja eksentrinen lihastyötapa ei tule tarpeeksi kuormitetuksi. Vaikka liikkeessä onkin eksentrinen ja isometrinen osuus, niin ne ovat submaksimaalisia vaiheita. Jos haluaa kuormittaa perinteisen voimaharjoittelun keinoin isometristä tai eksentristä lihastyötapaa, niin pitää liikettä hidastaa tai lisätä stoppeja liikkeeseen. Tämä on hyvä keino, mutta lisää huomattavasti liikkeen metabolista rasitusta, eikä niinkään liikkeen hermostollista osuutta. Lisääntynyt väsymys ja vähentynyt tehontuotto ei ole tavoiteltavia asioita nopeuslajin urheilijoille, ainakaan kilpailukaudella. Lisäksi perinteinen voimaharjoittelu aiheuttaa mekaanista vaurioita, josta toipumiseen menee aikaa. Isometrinen harjoittelu näyttäisi pitävän urheilijan hiukan tuoreempana, jotta nopeusharjoittelua voidaan tehdä mikrosyklin sisällä yhdessä voimaharjoittelun kanssa.
Isometrisen harjoittelun hyödyt piilevät nopeuslajien urheilijoille siinä, että ne voidaan suorittaa maksimaalisella intensiteetillä ilman kovaa väsymystä. Tämä johtuu suurelta osin eksentrisen vaiheen puutteesta, joten lihasvaurioita ei pääse samassa määrin syntymään. Lisäksi pienempi metabolinen rasitus isometrisessä harjoittelussa vähentää urheilijan akuuttia väsymystä.
Miten toteuttaa isometristä voimaharjoittelua käytännössä
Isometrisen harjoittelussa törmätään yleensä ongelmaan, että miten progressoida harjoittelua. Voiman kasvua voi mitata voimalevyillä tai erilaisilla venymämittareilla. Ilman näitä on vaikea havainnoida tuottaako urheilija tosissaan maksimaalisen määrän voimaa toiston aikana. Koska nopeuslajin urheilijoille tavoitteena on aina tuottaa maksimimäärä voimaa ja vielä mahdollisimman nopeasti, on intensiteettiprogressio haastavaa. Volyymiprogressio on taas tehokas tapa edetä, mutta sen kanssa pitää olla erittäin maltillinen. Harjoitusfrekvenssin lisääminen on toinen tehokas tapa lisätä volyymia. Viikossa tulisi olla noin 40- 60 s nopeaa voimantuottoon tähtäävää isometristä harjoittelua, jos tavoitteena on nopean voimantuoton parantaminen. Progressio voi olla esimerkiksi taulukko 1:den kaltainen.
Harjoituskerrat
Yhden harjoituskerran volyymi (s)
Kokonaisvolyymi (s)
Viikko 1
2
20
40
Viikko 2
2
25
50
Viikko 3
2
30
60
Viikko 4
3
20
60
Viikko 5
3
25
75
Viikko 6
3
30
90
Taulukko 1: Yli kuuden viikon ohjelmia ei kannata nopeassa isometrisessä voimantuottoharjoittelussa tehdä. Kuden viikon jälkeen tarvitaan viimeistään ärsykkeen vaihtelua.
Kuten kaikki nopeusharjoittelu pitäisi myös räjähtävää isometristä voimaharjoittelua tehdä tuoreena ja levänneen, jotta voidaan maksimoida nopea voimantuotto. Nopea voimantuotto näyttäisi laskevan jopa viiden toiston jälkeen (6), joten suositeltavaa olisi pitää toistomäärä vähäisinä (1-5). Sarjaprogressio määrässä on tehokkaampi tapa kuin toistojen lisääminen, eli esimerkiksi neljästä sarjasta kohti kymmentä sarjaa. Tärkeintä on kuitenkin, että harjoittelu suoritetaan maksimaalisella intentiolla.
Esimerkiksi Olsen ja Hopkins (7) laittoivat huippukamppailulajiurheilijat tekemään lajiliikespesifiä isometristä harjoittelua. Kamppailijat tekivät räjähtävää isometristä potkuliikettä, kun potkua suorittava jalka oli sidottu vyöllä kiinni ylös. Kamppailijat tekivät neljä sarjaa kymmenen toistoa (muutama sekunti) yhdeksän viikon ajan. Ohejlmassa oli maltillinen volyymiprogressio. Tutkijat huomasivat jopa 11-21 prosentin kasvun liikenopeudessa eri potkuliikkeissä.
Miten progressoida harjoittelua kuuden viikon ohjelman jälkeen?
Haluaisitko integroida isometrisen voimaharjoittelun mukaan ohjelmaan koko vuodeksi? Yksi hyvä tapa on tehdä intensiteettiprogressio ohjelmasta toiseen lisäämällä vauhtia. Esimerkiksi tämän kaltaisella ohjelmalla:
Intensiteetin kehittäminen. Vauhdin lisääminen blokista toiseen.
Isometrinen maksimaalinen työ liikkumatonta objektia vastaan tavoitteena kehittää spesifiä hypertrofiaa ja vahvistaa jänteitä (8-12 viikoa).
Räjähtävät isometriset (esim taulukon 1 ohjelma, noin 6 vikkoa)
Isometriset vaihdot (6 viikkoa)
Isometriset kiinniotot (6 viikkoa).
Isometriset vaihdot tarkoitavat dynaamisen liikkeen lisäämistä isometriseen voimaharjoitteluun. Tässä on tarkoitus haastaa isometristä voimaharjoittelua lisäämällä raajaan liikenopeutta, mikä pitää isometrisen voimaharjoittelun aikana pysäyttää ja hallita. Tämän kaltaista lihastyötä tehdään urheilussa suorituksissa huomattavan paljon. Alla muutama esimerkki isometrisistä vaihdoista, mutta jälleen vain mielikuvitus on isometrisessä voimaharjoittelussa rajana. Mikä liike palvelisi lajisi suorituskykyä parhaimmalla mahdollisella tavalla?
Isometriset kiinniotot taas ovat isometrisistä vaihdoista seuraava vauhdikkaampi askel. Näissä lisätään yhä enemmän raajan vauhtia. Mukaan tulee myös eksentrinen osuus ennen isometristä osuutta, joten kokonaisuudessaan nämä ovat jo hyvin lähellä dynaamisia liikkeitä.
Yhteenveto
Isometrinen harjoittelu on loistava tapa kehittää nopeaa voimantuottoa ilman suurempaa metabolista rasitusta. Toimii erityisen hyvin kilpailukauden aikana. Mekanismit nopean isometrisen voimantuoton ja hitaan isometrisen voimantuoton välillä vaihtelevat huomattavasti.
Esimerkiksi Maffiuletti ja Marin (8) vertailivat isometristä jalkaprässiä niin, että toinen ryhmä teki sitä räjähtävästi 1s ajan (yritti tuottaa mahdollisimman paljon voimaa mahdollisimman nopeasti) ja toinen ryhmä progressiivisesti 4s ajan (voimaa lisättiin rauhallisesti suorituksen toiston ajan lisää). Kummatkin ryhmät paransivat voimantuottoa huomattavasti. Mekanismit taustalla vaihtelivat, kun progressiivinen hitaampi isometrinen harjoittelu vaikutti vastus lateraliksen M-aaltojen ominaisuuksiin ilman vaikuttamatta lihassoluihin. M-aalto kuvastaa kaikkien motoristen yksiköiden yhtäaikaista syttymistä ja on kaikkien aktiopotentiaalien summa. Lyhyempi räjähtävä voimantuotto vaikutti lihassolujen supistuvien osien ominaisuuksiin, kun taas M – aallossa ei havaittu mitään muutoksia.
Onkin tärkeä tietää mitä haluaa kehittää ja miksi. Pelkkä isometrisen harjoittelun trendikkyys ei riitä syyksi ruveta tekemään sitä.
Alla listattuna muutamia erilaisia isometrisia harjoitteita;
Lähteet
Balshaw TG, Massey GJ, Maden-Wilkinson TM, Tillin NA, Folland JP. Training-specific functional, neural, and hypertrophic adaptations to explosive- vs. sustained-contraction strength training. J Appl Physiol. 2016;120(11):1364-1373.
Tillin NA, Folland JP. Maximal and explosive strength training elicit distinct neuromuscular adaptations, specific to the training stimulus. Eur J Appl Physiol. 2014;114(2):365-374.
Maffiuletti NA, Martin A. Progressive versus rapid rate of contraction during 7 wk of isometric resistance training. Med Sci Sports Exerc. 2001;33(7):1220-1227
Behm DG, Sale DG. Intended rather than actual movement velocity determines velocity-specific training response. J Appl Physiol. 1993;74(1):359-368.
Bogdanis GC, Tsoukos A, Methenitis SK, Selima E, Veligekas P, Terzis G. Effects of low volume isometric leg press complex training at two knee angles on force-angle relationship and rate of force development. Eur J Sport Sci. 2018;1-9. https://doi.org /10.1080/17461391.2018.1510989. [Epub ahead of print].
Viitasalo JT, Komi PV (1981) Effects of fatigue on isometric force- and relaxation-time characteristics in human muscle. Acta Physiologica Scandavica 111(1):87–95.
Olsen PD, Hopkins WG (2003) The effect of attempted ballistic training on the force and speed of movements. Journal of Strength and Conditioning Research 17(2):291–98.
Maffiuletti NA, Martin A (2001) Progressive versus rapid rate of contraction during 7 wk of isometric resistance training. Medicine and Science in Sports and Exercise 33(7):1220–27.
Isometrisellä lihastyötavalla viitataan lihastyöhön, missä lihasjännekompleksin pituudessa ei tapahdu muutosta. Konsentrisessa lihastyötavassa lihas lyhenee supistuessaan ja eksentrisessä lihastyötavassa lihas pitenee lihassolujen supistuessa. Esimerkkinä kyykystä ylös ponnistaminen on konsentrista lihastyötä suurimmalla osalla jalkojen lihaksia ja lihasten pituus lyhenee, kun taas eksentrinen toiminta pidentää lihaspituutta. Tästä esimerkkinä, kun mennään alaspäin kyykyssä. Isometristä harjoittelua voidaan käytännössä tehdä monella eri tavalla, mutta tässä jutussa keskitytään pelkästään työskentelyyn liikkumatonta esinettä vasten.
Isometrinen harjoittelu on erityisen mielenkiintoinen aihealue urheilijoille, koska isometristä harjoittelua voi hyödyntää positiivisten hermolihasjärjestelmän adaptaatioiden saavuttamiseksi ilman liiallista väsymystä, mitä perinteinen keskiraskas voimaharjoittelu aiheuttaa.
Minkälaisia adaptaatiota isometrinen harjoittelu aiheuttaa
Voiko pelkällä isometrisellä harjoittelulla kasvattaa lihasta?
Kyllä voi! Isometrinen harjoittelu 42–100 päivän ajan on johtanut 5,4–23% lihaksen poikkipinta-alan kasvuun ja jopa 91,7% nousuun maksimivoimassa (28-37). Pidempikestoinen interventio näyttäisi vaikuttavan huomattavasti lihaksen kokoon. Mitä pidempi interventio oli, sitä enemmän lihas kasvoi. Hypertrofiaan vaikutti myös harjoittelun intensiteetti, voluumi, supistuksen kesto ja lihaksen pituus.
Erityisesti pitkillä lihaspituuksilla tehty isometrinen harjoittelu parantaa ylivoimaisesti enemmän lihaksen kokoa verrattuna lyhyillä lihaspituuksilla tehtyyn isometriseen harjoitteluun, vaikka volyymi olisi tasattu näiden ryhmien välillä (1, 2 & 3). Tulokset ovat lähes samansuuntaisia, kun verrataan isometristä harjoittelua dynaamiseen harjoitteluun. Myös normaalissa dynaamisessa voimaharjoittelussa näyttäisi laaja liikerata olevan huomattavasti hyödyllisempi hypertrofian kannalta verrattuna vajaisiin liikeratoihin (4, 5 & 6). Yksi syy tähän voi olla, että pitkällä lihaspituudella tehdyt supistukset näyttäisivät tuottavan huomattavasti enemmän lihasvaurioita verrattuna lyhyellä lihaspituudella tehtäviin harjoitteisiin (7). Tämä johtuu siitä, että nivelen vipuvarsi kasvaa pitkillä lihaspituuksilla ja näin lisää mekaanista jännitystä lihaksessa verrattuna lyhyempään vipuvarteen. Suurempi mekaaninen jännitys aiheuttaa enemmän lihasvaurioita. Lisäksi pitkät lihaspituudet kuluttavat enemmän happea, vaativat enemmän verenkierrolta töitä ja kokonaisuudessaan lisäävät metaboliittien kerääntymistä enemmän kuin lyhyet lihaspituudet (8). Metaboliset tekijät ovat tutkitusti myös yhteydessä lihaskasvuun (9). Eli jos tavoitteena on spesifi lihaskasvu isometrisessä harjoittelussa, niin pitkät lihaspituudet ovat ehdottomasti paras valinta.
Volyymillä on selvästi väliä myös isometrisessä harjoittelussa, kun tavoitteena on lihaskasvu. Meyers (10) vertaili matala volyymista harjoittelua (3 x 6 sekuntia maksimaalisella intensiteetillä) korkea volyymiseen harjoitteluun (20 x 6 sekuntia maksimaalisella intensiteetillä) hauislihaksella. Kuuden viikon jälkeen enemmän volyymia tehnyt ryhmä oli saavuttanut selvästi isomman muutoksen hauislihaksen ympärysmitassa verrattuna matalavolyymiseen ryhmään. Myös Balshaw ja kumppanit (11) totesivat, että suurempi määrä volyymia (40 x 3 sekuntia 75% isometrisestä maksimista) tuotti enemmän lihaskasvua etureiteen 12-viikon aikana verrattuna pienempään harjoituskuormaan (40 x 1 sekuntia 80% isometrisestä maksimista).
Mielenkiintoista on myös, että Schott ja kumppanit (12) löysivät, että pidempikestoinen harjoittelu (4 x 30 sekuntia) tuotti enemmän hypertrofiaa verrattuna lyhyempikestoiseen harjoitteluun (4 x 10 x 3 sekuntia), vaikka liikesuoritteiden kokonaiskesto oli lopulta sekunnilleen yhtä pitkä. 14-viikon harjoittelun jälkeen etureiden vastus lateralis lihas kasvoi jopa 11,1% enemmän, kun lyhyempikestoisia supistuksia tehneellä ryhmällä ei löydetty ollenkaan merkitsevää muutosta etureiden kasvusta! Tämä voi johtua siitä, että pitkään ylläpidetyt supistukset estävät verenkierron ja vähentävät hapen saturaatiota alueella, stimuloiden näin hypertrofiaa monien paikallisten ja systeemisten mekanismien kautta.
Isometrinen harjoittelu muokkaa myös lihaksen arkkitehtuuria
Hypertrofiaa haettaessa lihastyötavalla ei ole hirveästi merkitystä, sillä niin dynaamisella, eksentrisellä ja isometrisellä harjoittelulla voidaan saada lihaskasvua aikaiseksi, mutta jos tavoitteena on saada muutoksia aikaan lihaksen arkkitehtuuriin, on lihatyötavalla todellakin merkitystä.
Laadukkaita tutkimuksia aiheesta ei ole paljoa, joten päätelmien tekeminen on haastavaa, mutta Noorkoiv ja kumppanit (3) huomasivat, että pidemmällä lihaspituudella tehty isometrinen harjoittelu (polvikulma 38.1 ± 3.7°) kasvatti vastus lateraliksen lihasfasciculuksen (lihassolukimppu, jota ympäröi lihaskalvo) pituutta keskiosassa lihasta merkitsevästi. Mielenkiintoisesti lyhyemmällä lihaspituudella tehty harjoittelu kasvatti taas distaalisessa päässä olevan lihasfasciculuksen pituutta. Ainoastaan yksi toinen tutkimus (1) on raportoinut vastus lateraliksen lihasfasciculuksen pituuden lisääntymistä ja myös pennaatiokulman muutoksesta pitkällä lihaspituudella tehdyn isometrisen harjoittelun jälkeen.
Isometrinen voimaharjoittelu näyttäisi aiheuttavan muutoksia lihaksen arkkitehtuuriin ja erityisesti lisäävän lihasfasciculuksen pituutta ja kenties jopa aiheuttaa muutoksia pennaatiokulmaan. Tällä on erityisesti väliä, jos tavoitteena on tehdä urheilijoista nopeampia, sillä esimerkiksi sprinttereillä on pidemmät lihasfasciculukset jaloissa verrattuna kestävyysurheilijoihin (38) ja 100 metrin juoksusuoritus on yhdistetty lihasfasciculuksien pituuksiin (39).
Isometrisen harjoittelun vaikutukset jänteisiin
Jänteen tarkoitus on siirtää voimia luun ja lihaksen välillä mahdollistaen nivelen liike. Ennen ajateltiin jänteiden olevan muuttumattomia, mutta onneksi nykyään tiedetään jo, että jänteet kykenevät adaptoitumaan stimulukseen merkitsevästi ja voivat käydä todella isoja arkkitehtuurisia muutoksia läpi pitkäaikaisen kuormituksen johdosta.
Esimerkiksi kun vertaillaan eri lajien urheilijoita akillesjännerepeämän kokemiin ihmisiin, on huomattu, että esimerkiksi lentopalloilijoilla on huomattavasti suurempi akillesjänne (119 ± 5.9) verrattuna akillesjännerepeämän kokemiin ihmisiin (101 ± 5.4). Mielenkiintoista oli, että kajakkiurheilijoilla oli lähes samankokoinen akillesjänne kuin repeämän kokemilla ihmisillä (101 ± 5.6) (13). Kajakkiurheilijat eivät juuri käytä akillesjänteitään lajissaan, joten harjoittelulla näyttäisi olevan suuri vaikutus jänteen rakenteisiin.
Jänteen adaptaatiot ovat erittäin tärkeitä ja haluttuja adaptaatioita nopeuslajin urheilijoille, sillä jänne toimii nopeassa liikkeessä liikuttajana jousen tavoin. Intensiteetti on ehdottomasti tärkein muuttuja jänteen adaptaatioissa. Kova intensiteettinen isometrinen plantaarifleksion harjoittelu (noin 90 % isometrisestä maksimista) lisäsi akillesjänteen poikkipinta-alaa ja jäykkyyttä 14-viikon harjoitteluohjelman aikana jopa parhaimmillaan 36 % (14 & 15). Samaa ei huomattu matalaintensiteettisellä harjoittelulla (55 % isometrisestä maksimista). Myös muut ovat raportoineet samankaltaisia runsaita muutoksia jänteen jäykkyydessä (vaihteluväli 17,5 % - 61,6 %) isometrisen voimaharjoittelun seurauksena intensiteetin vaihdellessa 70–100 % välillä isometrisestä maksimivoimasta (16, 17 & 18). Näyttäisi siltä, että 70 % voisi olla minimi-intensiteetti, joka vaaditaan haluttujen jänneadaptaatioiden saavuttamiseksi.
Räjähtävä isometrinen voimaharjoittelu taas lisäsi jänteen aponeuroosin elastisuutta, mutta vähensi jänteen poikkipinta-alaa (-2,8 %) (19). Isometrisen harjoittelun intensiteetillä ja kestolla saavutetaan hyvin erilaisia adaptaatioita. Jänteiden vahvistamisessa tulee suosia pidempiä ja intensiteetti korkealla tehtyjä supistuksia, kun taas kisakaudella voi tehdä terävämpiä elastisuutta lisääviä erittäin lyhyitä supistuksia. Lisäksi pidempi lihaspituus näyttäisi kehittävän jänteen jäykkyyttä enemmän kuin harjoittelu lyhyellä lihaspituudella samalla tavalla kuin lihaskasvussa (2).
Isometrisen voimaharjoittelun vaikutukset hermostoon
Hermoston adaptaatiot ovat kokonaisuudessaan hyvin harjoitteluspesifejä. Esimerkiksi Balshaw ja kumppanit (11) vertailivat 12 viikon aikana maksimaalista voimaharjoittelua (1 sekunnin rauhallinen nousu 75% isometrisestä maksimista ja siellä 3s pito) räjähtävään voimaharjoitteluun (mahdollisimman nopeasti >90% isometriseen maksimiin ja siellä 1s pito). Isometrinen maksimivoima kehittyi eniten maksimivoimaharjoittelulla, mutta räjähtävä voimaharjoittelu lisäsi EMG aktiivisuutta ihan liikkeen alussa (0–100 ms aikana) enemmän verrattuna maksimivoimaharjoitteluun. Nämä adaptaatiot olivat hermostoperäisiä ja olivat harjoitteluspesifejä, kun maksimivoimaharjoittelu kehitti maksimivoimaa ja räjähtävä voima kehitti nopeaa voimantuottokykyä. Myös ballistinen isometrinen harjoittelu on johtanut samankaltaisiin tuloksiin ja EMG amplitudin paranemiseen ensimmäisen 0-150 ms aikana verrattuna maksimivoimaharjoitteluun (11, 23 & 24).
Isometrisellä voimaharjoittelulla voidaan vaikuttaa lihaksen jännitys-pituussuhteeseen, eli siihen, millä lihaksenpituudella tai nivelen kulmalla tuotetaan isoin mahdollinen voima. Tämä on erityisen tärkeä urheilussa, jossa halutaan maksimoida suurin mahdollinen tuotettu voima halutussa asennossa. Myös parasta voimantuottokulmaa voidaan muokata isometrisellä harjoittelulla. Esimerkiksi Alegre ja kumppanit (25) raportoivat, että pidemmällä lihaspituudella harjoittelu kahdeksan viikon ajan johti 11 asteen muutokseen kohti pidempiä lihaspituuksia, kun taas lyhyemmillä kulmilla harjoittelu johti 5,3 astetta optimaalista kulmaa toiseen suuntaan. Myös Bogdanis ja kumppanit (26) huomasivat noin 10 % tiputuksen optimaalisessa kulmassa lyhyillä liikeradoilla harjoitellessa.
Pidempikestoinen supistus näyttäisi olevan joissakin tapauksissa tehokkaampi tapa parantaa voimaa ja myös dynaamista urheilun suorituskykyä (hyppäämistä ja juoksemista) verrattuna nopeaan isometriseen voimantuottotapaan (40). Pidemmässä supistuksessa tehtiin kolmen sekunnin ajan työtä ja räjähtävässä nopeassa isometrisessä voimantuottotavassa tehtiin yhden sekunnin verran töitä. Tuloksia on tulkittava hieman varovasti, sillä pidempää supistusta tehnyt ryhmä teki yhteensä 15 sekunnin verran työtä sarjassa, kun lyhyempää pätkää tehnyt ryhmä teki vain 10 sekunnin verran työtä. Kuuden viikon aikana ja 12 harjoituskerran vuoksi erot kertaantuvat ja tehty kokonaistyö oli huomattavasti isompi kolmen sekunnin ryhmässä verrattuna yhden sekunnin ryhmään. Tämä varmasti osaltaan selittää tuloksia.
Kolmen sekunnin ryhmä paransi esikevennettyä hyppyä 12,1 % ja yhden sekunnin ryhmä 10,8 %. Erot kasvaneista voimatasoissakin voivat selittää nämä muutokset. Mielenkiintoisesti pidempikestoinen isometrinen voimaharjoittelu aiheutti 1,4 % parannuksen 30 metrin juoksuaikaan. Tässäkin tapauksessa enemmän harjoitellut ryhmä paransi huomattavasti enemmän nopeuttaan, kun vähemmän harjoitellut ryhmä. Voisiko kasvaneet voimatasot, ei niinkään nopeus, selittää erot. Normaalilla kovalla kyykyllä ja plyometrisellä harjoittelulla on saatu 1,2 % parannus 30 metrin juoksuaikaan (43), joka on aika lähellä tämän tutkimuksen saamia tuloksia.
Toisaalta tässäkin tutkimuksessa huomattiin, että kyky tuottaa voimaa nopeammin parani yhden sekunnin ryhmällä enemmän kuin kolmen sekunnin ryhmällä, kun taas pidempikestoisessa supistuksessa maksimivoima kehittyi enemmän. Myös muut ovat raportoineet samankaltaisia tuloksia (41 & 42).
Yhteenveto
Isometristä harjoittelua voi hyödyntää positiivisten hermolihasjärjestelmän adaptaatioiden saavuttamiseksi ilman liiallista väsymystä. Tämä on erityisen tärkeää erityisesti urheilijoilla kilpailukauden aikana. Lisäksi jos tiettyä voimantuottokulmaa tai lajin vaatimia kulmia pitää harjoitella, niin isometrinen harjoittelu on erittäin tehokas työkalu niihin.
Isometrinen harjoitteluun pätee samat lainalaisuudet kuin muuhunkin harjoitteluun. Hypertrofiaa saavuttaaksesi tulee harjoittelua tehdä 70-75% intensiteetillä maksimaalisesta supistuksesta noin 3-30s ajan toistossa ja sarjamäärän ollessa > 80 – 150s per yksi harjoituskerta. Maksimivoimaa saavuttaaksesi isometristä harjoittelua tulee tehdä 80-100% maksimaalisesta supistuksesta 1-5s ajan ja kokonaiskeston ollessa 30-90s. Voimantuottonopeutta parantaakseen tulee suorituksessa pyrkiä tuottamaan mahdollisimman nopeasti mahdollisimman paljon voimaa. Sarjan keston tulee olla lyhyt. Kuvassa 3 on koottu tämänhetkiseen tutkimusnäyttöön perustuen ohjeistus isometriseen voimaharjoitteluun.
Tiivistys
Lihastakin voin kasvattaa pelkällä isometrisellä harjoittelulla. Volyymi ja lihaspituus ovat tärkeimmät muuttujat, kun tavoitteena on lihaskasvu.
Isometrisessä harjoittelussa intensiteetti on päämuuttuja voiman kohdalla. Hypertrofian kohdalla volyymi.
Ballistisella protokola on ylivoimainen räjähtävän voiman kehittymiseen. Ensimmäiselle 50 ja 100 ms voi parantaa voimantuottoa huomattavasti. Jos tämä on tavoite, niin harjoitteet tulisi tehdä mahdollisimman nopeasti ja mahdollisimman voimakkaasti.
Lähteet:
Alegre LM, Ferri-Morales A, Rodriguez-Casares R, Aguado X. Effects of isometric training on the knee extensor moment–angle relationship and vastus lateralis muscle architecture. Eur J Appl Physiol. 2014;114(11):2437-2446.
Kubo K, Ohgo K, Takeishi R, et al. Effects of isometric trainingmat different knee angles on the muscle–tendon complex in vivo. Scand J Med Sci Sports. 2006;16(3):159-167.
Noorkoiv M, Nosaka K, Blazevich AJ. Neuromuscular adaptations associated with knee joint angle-specific force change. Med Sci Sports Exerc. 2014;46(8):1525-1537.
Guex K, Degache F, Morisod C, Sailly M, Millet GP. Hamstring architectural and functional adaptations following long vs. short muscle length eccentric training. Front Physiol. 2016;7(340):1-9.
Barak Y, Ayalon M, Dvir Z. Transferability of strength gains from limited to full range of motion. Med Sci Sports Exerc. 2004;36(8):1413-1420.
Massey CD, Vincent J, Maneval M, Moore M, Johnson JT. An analysis of full range of motion vs. partial range of motion training in the development of strength in untrained men. J Strength Cond Res. 2004;18(3):518-521.
Allen TJ, Jones T, Tsay A, Morgan DL, Proske U. Muscle damage produced by isometric contractions in human elbow flexors. J Appl Physiol. 2018;124(2):388-399.
de Ruiter CJ, de Boer MD, Spanjaard M, de Haan A. Knee angle-dependent oxygen consumption during isometric contractions of the knee extensors determined with near-infrared spectroscopy. J Appl Physiol. 2005;99:579-586.
Dankel SJ, Mattocks KT, Jessee MB, Buckner SL, Mouser JG, Loenneke JP. Do metabolites that are produced during resistance exercise enhance muscle hypertrophy? Eur J Appl Physiol. 2017;117(11):2125-2135.
Meyers CR. Effects of two isometric routines on strength, size, and endurance in exercised and nonexercised arms. Res Q Exerc Sport. 1967;38(3):430-440
Balshaw TG, Massey GJ, Maden-Wilkinson TM, Tillin NA, Folland JP. Training-specific functional, neural, and hypertrophic adaptations to explosive- vs. sustained-contraction strength training. J Appl Physiol. 2016;120(11):1364-1373.
Schott J, McCully K, Rutherford OM. The role of metabolites in strength training: short versus long isometric contractions. Eur J Appl Physiol Occup Physiol. 1995;71(4):337-341.
Kongsgaard M, Aagaard P, Kjaer M, Magnusson SP. Structural Achilles tendon properties in athletes subjected to different exercise modes and in Achilles tendon rupture patients. J Appl Physiol (1985). 2005 Nov;99(5):1965-71. doi: 10.1152/japplphysiol.00384.2005. Epub 2005 Aug 4. PMID: 16081623.
Arampatzis A, Karamanidis K, Albracht K. Adaptational responses of the human Achilles tendon by modulation of the applied cyclic strain magnitude. J Exp Biol. 2007;210:2743-2753.
Arampatzis A, Peper A, Bierbaum S, Albracht K. Plasticity of human Achilles tendon mechanical and morphological properties in response to cyclic strain. J Biomech. 2010;43(16):3073-3079.
Burgess KE, Connik MJ, Graham-Smith P, Pearson SJ. Plyometric vs isometric training influences on tendon propertied and muscle output. J Strength Cond Res. 2007;21(3):986-989.
Kubo K, Kanehisa H, Fukunaga T. Effects of different duration isometric contractions on tendon elasticity in human quadriceps muscles. J Physiol. 2001;536(2):649-655.
Kubo K, Ishigaki T, Ikebukuro T. Effects of plyometric and isometric training on muscle and tendon stiffness in vivo. Physiol Rep. 2017;5(e13374):1-13
Massey G, Balshaw T, Maden-Wilkinson T, Tillin N, Folland J. Tendinous tissue adaptation to explosive- vs. sustained-contraction strength training. Front Physiol. 2018;9(1170):1–17.
Bandy WD, Hanten WP. Changes in torque and electromyographic activity of the quadriceps femoris muscles following isometric training. Phys Ther. 1993;73(7):455-465.
Barak Y, Ayalon M, Dvir Z. Transferability of strength gains from limited to full range of motion. Med Sci Sports Exerc. 2004;36(8):1413-1420.
Massey CD, Vincent J, Maneval M, Moore M, Johnson JT. An analysis of full range of motion vs. partial range of motion training in the development of strength in untrained men. J Strength Cond Res. 2004;18(3):518-521.
Tillin NA, Folland JP. Maximal and explosive strength training elicit distinct neuromuscular adaptations, specific to the training stimulus. Eur J Appl Physiol. 2014;114(2):365-374.
Maffiuletti NA, Martin A. Progressive versus rapid rate of contraction during 7 wk of isometric resistance training. Med Sci Sports Exerc. 2001;33(7):1220-1227
Alegre LM, Ferri-Morales A, Rodriguez-Casares R, Aguado X. Effects of isometric training on the knee extensor moment– angle relationship and vastus lateralis muscle architecture. Eur J Appl Physiol. 2014;114(11):2437-2446.
Bogdanis GC, Tsoukos A, Methenitis SK, Selima E, Veligekas P, Terzis G. Effects of low volume isometric leg press complex training at two knee angles on force-angle relationship and rate of force development. Eur J Sport Sci. 2018;1-9. https://doi.org /10.1080/17461391.2018.1510989. [Epub ahead of print].
Behm DG, Sale DG. Intended rather than actual movement velocity determines velocity-specific training response. J Appl Physiol. 1993;74(1):359-368.
Balshaw T, Massey GJ, Maden-Wilkinson TM, Tillin NA, Folland JP. Training-specific functional, neural, and hypertrophic adaptations to explosive- vs. sustained-contraction strength training. J Appl Physiol (1985) 2016; 120: 1364–1373
Davies J, Parker DF, Rutherford OM, Jones DA. Changes in strengh and cross sectional area of the elbow flexors as a result of isometric strength training. Eur J Appl Physiol 1988; 57: 667–670
Garfinkel S, Cafarelli E. Relative changes in maximal force, EMG, and muscle cross-sectional area after isometric training. Med Sci Sports Exerc 1992; 24: 1220–1227
Ikai M, Fukunaga T. A study on training effect on strength per unit corss-sectional area of muscle by means of ultrasonic measurement. Eur J Appl Physiol 1970; 28: 173–180
Jones DA, Rutherford OM. Human muscle strength training: The effects of three different regimes and the nature of the resultant changes. J Physiol 1987; 391: 1–11
Kanehisa H, Nagareda H, Kawakami Y, Akima H, Masani K, Kouzaki M, Fukunaga T. Effects of equivolume isometric training programs comprising medium or high resistance on muscle size and strength. Eur J Appl Physiol 2002; 87: 112–119
Kubo K, Ohgo K, Takeshi R, Yoshinaga K, Tsunoda N, Kanehisa H, Fukunaga T. Effects of isometric training at different knee angles on the muscle-tendon complex in vivo. Scand J Med Sci Sports 2006; 16: 159–167
Noorkoiv M, Nosaka K, Blazevich AJ. Neuromuscular adaptations associated with knee joint angle-specific force change. Med Sci Sports Exerc 2014; 46: 1525–1537
Noorkoiv M, Nosaka K, Blazevich AJ. Effects of isometric quadriceps strength training at different muscle lengths on dynamic torque production. J Sports Sci 2015; 33: 1952–1961
Schott J, McCully K, Rutherford OM. The role of metabolites in strength training II. Short vs. long isometric contractions. Eur J Appl Physiol 1995; 71: 337–341
Abe, Takashi, Kumagai, Kenya, Brechue, William F. Fascicle length of leg muscles is greater in sprinters than distance runners, Medicine & Science in Sports & Exercise: June 2000; 32(6): 1125-1129.
Kumagai K, Abe T, Brechue WF, Ryushi T, Takano S, Mizuno M. Sprint performance is related to muscle fascicle length in male 100-m sprinters. J Appl Physiol (1985). 2000 Mar;88(3):811-6. doi: 10.1152/jappl.2000.88.3.811. PMID: 10710372.
Lum, D., Barbosa, T.M., Joseph, R. et al. Effects of Two Isometric Strength Training Methods on Jump and Sprint Performances: A Randomized Controlled Trial. J. of SCI. INSPORTANDEXERCISE3, 115–124 (2021). https://doi.org/10.1007/s42978-020-00095-w
Balshaw T, Massey GJ, Maden-Wilkinson TM, Tillin NA, Folland JP. Training-specifc functional, neural, and hypertrophic adaptations to explosive- vs. sustained-contraction strength training. J Appl Physiol. 2016;120(11):1364–73
Tillin NA, Folland JP. Maximal and explosive strength training elicit distinct neuromuscular adaptations, specifc to the training stimulus. Eur J Appl Physiol. 2014;114(2):365–74.
Ronnestad BR, Kvamme NH, Sunde A, Raastad T. Short-term efects of strength and plyometric training on sprint and jump performance in professional soccer players. J Strength Cond Res. 2008;22(3):773–80
Behm DG, Sale DG (1993) Intended rather than actual movement velocity determines velocity-specific training response. Journal of Applied Physiology 74(1):359–68.
Maffiuletti NA, Martin A (2001) Progressive versus rapid rate of contraction during 7 wk of isometric resistance training. Medicine and Science in Sports and Exercise 33(7):1220–27.
Olsen PD, Hopkins WG (2003) The effect of attempted ballistic training on the force and speed of movements. Journal of Strength and Conditioning Research 17(2):291–98.
Viitasalo JT, Komi PV (1981) Effects of fatigue on isometric force- and relaxation-time characteristics in human muscle. Acta Physiologica Scandavica 111(1):87–95.
Oranchuk DJ, Storey AG, Nelson AR, Cronin JB. Isometric training and long-term adaptations: Effects of muscle length, intensity, and intent: A systematic review. Scand J Med Sci Sports. 2019 Apr;29(4):484-503. doi: 10.1111/sms.13375. Epub 2019 Jan 13. PMID: 30580468.
Aapo Räntilä
Olen pääkaupunkiseudulla vaikuttava voima-, fysiikka- ja yleisurheiluvalmentaja. Valmentajana olen toiminut kohta 10 vuoden ajan. Olen erityisen kiinnostunut urheilijoiden suorituskyvystä ja harjoittelun yksilöllisistä eroista urheilijoilla sekä periodisaatiosta. Saan urheilijat suoriutumaan lajissaan paremmin.
Tämä sivusto on luotu aputyökaluksi valmentajille, jotka haluavat perustaa valmentamisensa tieteelliseen näyttöön. Alalla on vielä paljon käytössä vanhentuneita toimintatapoja, jotka heikentävät urheilijoiden suorituskykyä. Pyrin jakamaan tieteellistä tietoa ja auttamaan objektiivisesti kaikkia valmentajia.