Viime osassa syvennyttiin pikajuoksun voimaharjoittelun teoriaan. Nostona huomio siitä, ettei korkean voiman ja suuren liikenopeuden periodisointi peräkkäin ole järkevää pikajuoksussa, vaan niitä kannattaisi kehittää rinnakkain kokoajan. Tämä johtuu pääasiassa siitä, että eri lihakset tarvitsevat erilaista voimantuottokykyä. Tässä osassa keskitytään käytännön puoleen ja siihen, miten edellä mainittuja asioita voi hyödyntää käytännössä sekä miten voimaharjoitteluohjelma kannattaisi rakentaa pikajuoksijalle. Tiedossa on paljon videomateriaalia ja käytännön esimerkkejä.
Alustus: mitä treenataan ja miksi?
Pikajuoksija ei välttämättä tarvitse kyykkyä ollenkaan
Kyykkyä pidetään hyvänä liikkeen pikajuoksijalle. Sen kanssa kannattaa edetä kuitenkin varovasti. Kyykky on hyvä perusvoimapohjien rakentaja, mutta esimerkiksi hypertrofiassa kehittää lähes täysin etureisien distaalisia päitä. Kanesha et al. (2003) seurasivat juniori painonnostajia 18 kuukauden ajan ja huomasivat, että reiden ojentajien poikkipinta-ala kasvoi merkitsevästi distaalisista päistä mittauksissa, mutta ei proksimaalisissa. Painonnostajat kyykkäilivät syvää high-bar kyykkyjä (kuva 1). Pikajuoksija ei tarvitsisi distaaliseen päähän kokoa vaan nimenomaan proksimaaliseen päähän. Huippujuoksijoiden morfologiaa vertaillessa huonompi tasoisiin juoksijoihin voidaan huomata, että paremmilla juoksijoilla (10–10.9s) on suurempi lihastiheys yläosassa reittä, eikä merkitseviä eroja vastus lateraliksen paksuudessa, eli distaalisessa päässä (Kumagai et al., 2010). Lisäksi paremmilla juoksijoilla on huomattu negatiivinen yhteys lihaksen fasiculuksen pituuden ja ennätysajan välillä, tarkoittaen sitä, että mitä pidempi lihassäie on sitä parempi ennätysaika on. Lihaspaksuus ei siis välttämättä tässä auta nopeuden kehittämisessä.
Pikajuoksijan moottori on pakara
Pikajuoksijan tehontuotto välineen toimii pakara. Mitä nopeampi juoksija on, sitä isompi pakara häneltä löytyy (kuva 2). Tästä voidaan päätellä, että isompaa pakaraa tarvitaan nopeampaan juoksuun. Lisäksi kovempi tasoisilla juoksijoilla (10,10 ± 0,07) on selvästi pienempi rasvaprosentti verrattuna keskitason pikajuoksijoihin (10,80 ± 0,30). Rasvaprosentin alentaminen onkin yksi helpoin tapa parantaa juoksunopetta. Liikuteltavan massan määrä pienenee, mutta tehontuotto pysyy samana.
Pakaraa voi kehittää lantionnostoilla ja sen eri variaatioilla. Tässä esimerkkinä pikajuoksija Annimari Korte ja 255 kilon lantionnosto.
Vastuskelkkaharjoittelu erinomaista voimaharjoittelua
Vastuskelkkaharjoittelu on hyvä tapa kehittää lajivoimaa. Usein vastuskelkkaharjoittelussa käytetään noin 10-15% painoja kehonpainosta. Tavoitteena on yleensä, että maksiminopeus ei tippuisi enempää kuin 10%. Toisaalta horisontaaliseen voimaharjoitteluun erittäin raskas kelkkaharjoittelu voisi olla tehokas väline. Horisontaalista voimaharjoittelua on hankalaa toteuttaa salilla. Raskas vastuskelkkaharjoittelu mahdollistaa tilanteen, jossa voi kehittää suuria voimia haluttuun kulmaan (eteenpäin kallistuneeseen) ja saada aikaan suuren lihasaktiivisuuden alaraajojen lihaksistossa. Kevyt vastuskelkkaharjoittelu ei mahdollista suuren voiman tuottamista ja ei kehitä voimantuottokykyä. Raskas vastuskelkkaharjoittelu (80% kehonmassasta kelkassa) on todettu olevan tehokas keino kehittämään maksimaalista horisontaalista voimantuottokykyä (Morin et al., 2016). Toivoisinkin näkeväni enemmän myös raskasta kelkkaharjoittelua pelkän kevyeiden kelkkajuoksujen rinnalla.
Raskaat kelkkavedot, jossa kuorma on oikeasti raskas, voimantuottoaika korkeampi ja pystytään kehittämään voimantuottokykyä horisontaalisesti.
Kevyet kelkkajuoksut taas toimivat enemmän lajivoiman ja nopeuden kehittämisessä, eivät niinkään voimantuottokyvyn kehittämisessä.
Vastuskelkkaharjoittelu saattaa olla tehokkaampaa horisontaalisen voiman ja tehontuoton kehittämistä kuin perinteinen voimaharjoittelu (Petrakos ym., 2016). Tämä johtuisi pääasiassa siitä, että vastustkelkkaharjoittelu toistaisi samaa motorista kaavaa ja lihassolujen supistustyyppiä kuin pikajuoksu. Vastuskelkkaharjoittelu jaetaan yleensä kevyeeseeen (< 10% nopeuden väheneminen), keskikovaan (< 10-15%), raskaaseen (< 15-30%) ja todella raskaaseen (> 30%) kuormaan (Petrakos et al., 2016). Osan perinteistä voimaharjoittelusta voi korvata raskaalla vastuskelkkavedoilla (Cross et al., 2018). Cross ja kumppanit (2018) ehdottavat kuormaksi sellaista, että vauhti putoaa noin 50% vähennystä maksiminopeudessa. Morin ja kumppanit (2017) testasivat tätä käytännössä ja huomasivat selvän eron horisontaalisessa voimantuottokyvyssä, kun verrattiin normaalia juoksuja tehneisiin kontrolliryhmään. Mielenkiintoista olisi ollut nähdä vertaus perinteistä voimaharjoittelua tehneeseen ryhmään.
Taulukko 1: Vastuskelkkajuoksut (resisted sprints) vaativat 3-6 minuutin tauon suoritusten välissä ja vähintään pari päivää harjoitussessioiden välissä. Kokonaisvoluumin on syytä olla matala yhdellä harjoituskerralla noin 50-200 metriä. Haugen ym., 2019.
Training method | Distance (m) | Intensity (%) | Recoveries (min) | Total session volume (m) | Initiation | Time to next HIS (hours) | Footwear and surface |
Acceleration | 10–50 | > 98 | 2–7 | 100–300 | Block/3-point/crouched | 48 | Spikes on track |
Maximal velocity | 10–30a | > 98 | 4–15 | 50–150a | 20–40-m flying start | 48–72 | Spikes on track |
Sprint-specific endurance | 80–150 | > 95 | 8–30 | 300–900 | Standing start | 48–72 | Spikes on track |
Speed endurance | 60–80 | 90–95 | 2–4 (8–15) | 600–2000 | Standing start | 48–72 | Spikes on track |
Resisted sprints | 10–30 | 80–95b | 3–6 | 50–200 | 3-point/crouched | 48 | Optional |
Assisted sprints | 10–30a | ≤ 105 | 5–15 | ≤ 100a | 20–40-m flying start | 48 | Spikes on track |
Tempo | 100–300 | 60–70 | 1–3 | 1000–2000 | Standing start | 24 | Trainers on grass |
b. Flying start distance excluded
c. The perceived effort is maximal, so the velocity decline is caused by resistance loading
Voimaharjoittelua lonkan ojentajille ja koukistajille korkeammilla nopeuksilla
Horisontaalivoimaa ja lonkan aluetta tulee kehittää erityisesti myös nopeammilla liikenopeuksilla kuten ensimmäisessä osassa käytiin läpi. Toisin kuin tulevissa videoissa niin jokainen liike tulee suorittaa maksimaalisella liikenopeudella!
Kuminauha kahvakuulaheilautus:
Lonkan koukistus – voi tehdä myös ojennuksen – mallintaa heilausvaihetta (kevyt kuorma, nopeasti!):
Muita horisontaalisen voiman kehittäviä loikkia:
Yhden jalan nopea hyppy eteenpäin:
Nopeusloikka:
Suorin jaloin saksiloikka (lisäpaino kevyestä vastuskelkasta):
Polven alueen lihaksiston vahvistaminen
Näitä kannattaa tehdä harjoittelun loppupuolella kun on ensiksi tehty nopean liikenopeuden liikkeet. Polven alueen lihaksisto ottaa juoksun aikana suuria voimia vastaan eksentrisesti ja niiden vahvistaminen on äärimmäisen tärkeää.
NFL pelaajan vakuuttavaa tekemistä nordic hamstring raise liikkeessä:
Lisätty eksentrinen kuorma takareisikoukistukseen. Kannattaa käyttää sellaista painoa, jota yhdellä jalalla ei saisi ylös:
Reverse nordic, eli etureiden harjoittamista eksentrisesti. Haastetta saa kasaamalla lisäpainoa syliin.
Isometriset takareisille. Näihin kannattaa rakentaa progressio niin, että tavoitteena on käyttää lisäpainona 50% kehonpainosta ja tavoitteena pitää helposti yhdellä jalalla 30s asentoa yllä. Tarkoittaen, että 100 kiloinen mies jaksaisi pitää helposti 50 kilon kuormaa ja 30s asentoa yllä yhdellä jalalla.
Vertikaalivoima
Vertikaalivoimaa on järkevä kehittää sopivissa määrin. Erityisesti pakaran ja pohkeiden harjoittaminen on tärkeää pikajuoksun kannalta.
Askelkyykkyhyppely. Käsipainoista lisävastusta.
Askelkyykky korokkeelta ja lisäpainoa rohkeasti niskaan. Pikajuoksija voi vielä progressoida liikettä lähtemällä polvennostoasennosta ja kaatumalla eteenpäin, jotta maksimoidaan eksentrinen kuormitus:
Romanialainen maastaveto (voimantuottokäyrää voi muokata kuminauhoilla tai ketjuilla) on erinomainen like takaketjun kehittämiseen. Tästä puoli unilateraalinen versio, eli split stance Romanian deadlift. Tässä toinen jalka antaa hieman tukea. Tykkään tosi paljon itse laittaa tätä urheilijoille. Asento mahdollisaa suuremman painon käyttämisen verrattuna yhden jalan versioon, koska tasapaino pysyy paremmin, mutta silti pystyy keskittymään yhden jalan tekemiseen paremmin kuin kahdella jalalla.
Kuntopallovariaatioita on monia, mutta tässä yksi. Kuntopallon heitto ylöspäin. Näissä vain mielikuvitus on rajana.
Tempaus työntöotteella roikunnasta:
Raaka rinnalleveto roikunnasta:
Boksille nousu hypyllä. Lisäpainoa taas käsipainoista.
Trap-bar hypyt:
Tankohypyt puolikyykystä:
Työntöveto:
Flywheel laitteilla takareidet. Laitteiden käyttö perustuu nopeammalle ja aggressiivisemmalle eksentriselle vaiheella, mikä auttaa pikajuoksijaa kehittämään nimenomaan jarrutavia voimantuotto ominaisuuksia, mitä tarvitaan polven alueen lihaksistolle. Mitä enemmän ja nopeammin tuottaa voimaa konsentrisessa vaiheessa, sitä enemmän kiekko pyörii, ja vetää taas urheilijaa eksentrisessä vaiheessa alaspäin. Täten eksentrinen vaihe on nopeampi ja vaativampi verrattuna normaaliin voimaharjoitteluun. Eksentrinen vaihe saakin aikaan vauhtipyöräharjoittelun pääharjoitusvasteen.
Erilaisia liikevariaatioita vertikaalivoiman kehittämiseen flywheel laitteella:
Pohkeiden harjoitteleminen monipuolisesti. Esimerkiksi erilaisten juoksudrillien tekeminen lisäpainon kanssa joko niskassa tai pään päällä. Lisäksi isometrinen harjoittelu on erittäin tehokasta pohkeille:
Tässä oli listattuna erilaisia variaatioita, joilla voi kehittää pikajuoksijan voimantuotto-ominaisuuksia. Näissä kahdessa artikkelissa on käyty läpi suhteellisen kattavasti pikajuoksijan voimaharjoittelu teoria ja käytäntö. Koko paketin vetäminen kasaan, ohjelmointi, progression rakentaminen ja periodisaatio jää valmentajan harteille, jos siihen kaipaa apua niin ota yhteyttä. Tsempit reeneihin!
Lähteet:
Askling, C., Karlsson, J., & Thorstensson, A. (2003, August). Hamstring injury occurrence in elite soccer players after preseason strength training with eccentric overload. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/12859607
Baker, D., and Nance, S. The Relation Between Running Speed and Measures of Strength and Power in Professional Rugby League Players. J. Strength Cond. Res.13(3): 230-235, 1999.
Behrens, M., Mau-Moeller, A., Mueller, K., Heise, S., Gube, M., Beuster, N., … Bruhn, S. (2015, February 4). Plyometric training improves voluntary activation and strength during isometric, concentric and eccentric contractions. Retrieved from https://www.sciencedirect.com/science/article/pii/S1440244015000377
Bosch, F., and Klomp, R. Running: Biomechanics and Exercise Physiology Applied in Practice. Philadelphia, PA: Elsevier, 2005.
Čoh, M., & Zvan, M., Veličkovska, L., Zivkovic, V. & Gontarev, S. (2016). BIODYNAMICAL FACTORS OF RUNNING SPEED DEVELOPMENT. 5. 17-22.
Colyer, S. L., Stokes, K. A., Bilzon, J. L. J., Holdcroft, D., & Salo, A. I. T. (2018, April 1). Training-Related Changes in Force-Power Profiles: Implications for the Skeleton Start. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/28872389
Cross MR, Lahti J, Brown SR, Chedati M, Jimenez-Reyes P, Samozino P, et al. Training at maximal power in resisted sprinting: optimal load determination methodology and pilot results in team sport athletes. PLoS One. 2018;13(4):e0195477.
Cronin, J., Ogden, T., Lawton, T., and Brughelli, M. Does Increasing Maximum Strength Improve Sprint Running Performance. 29(3): 86-95, 2007.
Cunha, L., Alves, F., & Veloso, A. (2002). The touch-down and takeoff angles in different phases of 100 m sprint running. Presentation at the International Symposium on Biomechanics in Sport, Caceres-Extremadura, Spain.
Erskine, R. M., Jones, D. A., Maffulli, N., Williams, A. G., Stewart, C. E., & Degens, H. (2011, February). What causes in vivo muscle specific tension to increase following resistance training? Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/20889606
Haugen, T., Seiler, S., Sandbakk, Ø. et al. The Training and Development of Elite Sprint Performance: an Integration of Scientific and Best Practice Literature. Sports Med - Open 5, 44 (2019). https://doi.org/10.1186/s40798-019-0221-0
Hucteau, E., Jubeau, M., Cornu, C. et al. Is there an intermuscular relationship in voluntary activation capacities and contractile kinetics?. Eur J Appl Physiol 120, 513–526 (2020). https://doi.org/10.1007/s00421-019-04299-z
Janusevicius, D., Snieckus, A., Skurvydas, A., Silinskas, V., Trinkunas, E., Cadefau, J. A., & Kamandulis, S. (2017, June 1). Effects of High Velocity Elastic Band versus Heavy Resistance Training on Hamstring Strength, Activation, and Sprint Running Performance. Retrieved from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5465986/
Kanehisa H, Funato K, Kuno S, et al. Growth trend of the quadriceps femoris muscle in junior Olympic weight lifters: an 18-month follow-up survey. Eur J Appl Physiol 2003; 89: 238-42.
Kumagai K, Abe T, Brechue WF, et al. Sprint performance is related to muscle fascicle length in male 100-m sprinters. J Appl Physiol 2000; 88: 811-6.
Miller R, Balshaw TG, Massey GJ, Maeo S, Lanza MB, Johnston M, Allen SJ, Folland JP. The Muscle Morphology of Elite Sprint Running. Med Sci Sports Exerc. 2020 Oct 1. doi: 10.1249/MSS.0000000000002522. Epub ahead of print. PMID: 33009196.
Morin, J.-B., Petrakos, G., Jiménez-Reyes, P., Brown, S. R., Samozino, P., & Cross, M. R. (2017, July). Very-Heavy Sled Training for Improving Horizontal-Force Output in Soccer Players. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/27834560
Morin JB, Petrakos G, Jiménez-Reyes P, Brown SR, Samozino P, Cross MR. Very-heavy sled training for improving horizontal-force output in soccer players. Int J Sports Physiol Perform. 2017;12(6):840–4.
Nagahara R, Zushi K. Development of maximal speed sprinting performance with changes in vertical, leg and joint stiffness. J Sports Med Phys Fitness. 2017 Dec;57(12):1572-1578. doi: 10.23736/S0022-4707.16.06622-6. Epub 2016 Jul 13. PMID: 27406013.
Nagano, A., & Komura, T. (2003, November). Longer moment arm results in smaller joint moment development, power and work outputs in fast motions. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/14522209
Petrakos G, Morin JB, Egan B. Resisted sled sprint training to improve sprint performance: a systematic review. Sports Med. 2016;46(3):381–400.
Poliquin, C., Patterson, Paul. Terminology: Classification of Strength Qualities. Strength Conditioning J. 11(6):48-52, 1989.
Reich, T. E., Lindstedt, S. L., LaStayo, P. C., & Pierotti, D. J. (2000, June). Is the spring quality of muscle plastic? Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/10848536
Ross, S. A., & Wakeling, J. M. (2016, June). Muscle shortening velocity depends on tissue inertia and level of activation during submaximal contractions. Retrieved from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4938035/
Schache, A. G., Blanch, P. D., Dorn, T. W., Brown, N. A. T., Rosemond, D., & Pandy, M. G. (2011, July). Effect of running speed on lower limb joint kinetics. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/21131859
Siff, MC. Supertraining. Denver, CO: Supertraining Institute, 2003.
Widrick, J. J., Stelzer, J. E., Shoepe, T. C., & Garner, D. P. (2002, August). Functional properties of human muscle fibers after short-term resistance exercise training. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/12121854
Wilson, G., Newton, R., Murphy, A. & Humphries, B. (1993) The optimal training load for the development of dynamic athletic performance. Med Sci Sports Exerc. Nov;25(11):1279-86. PMID: 8289617.